Dilution Solution

Solution Dilution

Slide 2

ш		/

Concentration is...

...any statement of the relationship between the amount of stuff ("solute") dissolved in a solvent/solution.

some measure of solute
some measure of solution

Slide 5

Could be ANYTHING

g of solute
g of solution
mL of solute
mL of solution
moles of solute
moles of solution
moles of solution
to f solution
moles of solution
f solution

Slide 6

UNITS! UNITS! UNITS!

The units are your friend – ALWAYS! The units tell you how to measure your "stuff".

 $M = \frac{moles\ of\ solute}{L\ of\ solution}$

So, if I've got Molarity (M), I probably want to measure the volume...

Silde /			
	$L of solution \frac{moles of solute}{L of solution} = moles of solute$		
	L of solution — motes of solute		
Clinto O		1	
Slide 8	If I have		
	$\frac{g \ of \ solute}{g \ of \ solution}$		
	g of solution		
	Then I want to measure		
	Then I want to measure		
	GRAMS of solution!		
Slide 9			
Siluc 5			
	$grams \ of \ solution \ \frac{grams \ of \ solute}{grams \ of \ solution} = grams \ of \ solute$		
	Concentration is always just a conversion factor between the way you measured the solution and how		
	between the way you measured the solution and how much solute you've got!		
	The SOLUTE is almost always the thing you care about. The solvent/solution is just the carrier.		

ci: i

When you mix things...

...you "dilute" them.

But the concentration is still just the ratio of the amount of solute and the amount of solution.

Slide 11

Slide 14

Slide 15

It's tough when they are invisible...

...so make them visible.

A picture paints 1000 words (...so why can't I paint you?).

If you can draw it so you can see it, it makes pretty good common sense.

50 mL of 0.215 M $\rm Na_2SO_4$ is mixed with 200 mL of 0.500 M PbSO₄. What is the concentration of $\rm Na_2SO_4$ after mixing?

I think I'll draw a picture!

Slide 17

M is just a conversion factor

Notice I multiply 50 mL by the concentration not 250 mL.

Why? (you may ask)

Because the concentration applied to THAT solution

Slide 20

Slide 21

Conservation of moles...

In general, there's no such thing. But in a dilution there is...

Moles at the beginning = moles at the end!

It's just the volumes that change.

,			

Plug and chug

This sometimes gets written in algebraic form:

 $M_1V_1 = M_2V_2$

Or sometimes $C_1V_1=C_2V_2$

It still boils down to: Moles in "solution 1" = Moles in "solution 2"

Slide 23

Plug and chug

This sometimes gets written in algebraic form:

 $M_1V_1 = M_2V_2$

$$\frac{moles\ in\ 1}{L\ of\ 1}L\ of\ 1=\frac{moles\ in\ 2}{L\ of\ 2}L\ of\ 2$$

Notice that the Molarity of a solution is coupled with the volume of that solution.

•			_
•			-
•			-
•			-
•			-
			 -
•			_
•			-
		 	-
•			-
			_
			 -
			 -
•		 	_
	 		-
	 		-
•			-
	 	 	-
		 	_

0.215 M Na₂SO₄ (50 mL) = M₂ (250 mL)

M₂=0.043 M Na₂SO₄

Slide 26

Slide 27

The units must cancel...

...but it doesn't matter what they are...

 $\mathsf{C}_1\mathsf{V}_1=\mathsf{C}_2\mathsf{V}_2$

As long as the "C"s are in the SAME units and the "V"s are in the SAME units, everything is fine.

Slide 28			
	$Molarity \times mL = Molarity \times mL$		
	% by mass $\times L = \%$ by mass $\times L$		
	$Molarity \times gallons = Molarity \times gallons$		
Slide 29			
Sa.S = 5	Question	 	
	When 50.00 mL of 0.125 M silver (I) nitrate is		
	mixed with 50.00 mL of 0.250 M sodium sulfate a greyish solid forms. If I recover 0.813 g of	 	
	solid, what is the yield of the reaction?		
Slide 30			
	Limiting reactant problem		
	How do I know?		
	I have limited amounts of each reactant.		
	When 50.00 mL of 0.125 M silver (I) nitrate is mixed with 50.00 mL of 0.250 M sodium sulfate a greyish		
	solid forms. If I recover 0.813 g of solid, what is the yield of the reaction?		
	Where do start?		

ALWAYS A BALANCED EQUATION!

When 50.00 mL of 0.125 M silver (I) nitrate is mixed with 50.00 mL of 0.250 M sodium sulfate a greyish solid forms.

 $AgNO_3$ (aq) + Na_2SO_4 (aq) \rightarrow ???

What type of reaction is this?

Double replacement – two ionic reactants!

Slide 32

ALWAYS A BALANCED EQUATION!

 $AgNO_3$ (aq) + Na_2SO_4 (aq) $\rightarrow Ag^+ + NO_3^- + Na^+ + SO_4^{2-}$

 $AgNO_3$ (aq) + Na_2SO_4 (aq) $\rightarrow Ag_2SO_4 + NaNO_3$

 $2 \text{ AgNO}_3 (aq) + \text{Na}_2 \text{SO}_4 (aq) \rightarrow \text{Ag}_2 \text{SO}_4 + 2 \text{ NaNO}_3$

2 $AgNO_3$ (aq) + Na_2SO_4 (aq) $\rightarrow Ag_2SO_4$ (s) + 2 $NaNO_3$ (aq)

Slide 33

2 $AgNO_3$ (aq) + Na_2SO_4 (aq) \rightarrow Ag_2SO_4 (s) + 2 $NaNO_3$ (aq)

When 50.00 mL of 0.125 M silver (I) nitrate is mixed with 50.00 mL of 0.250 M sodium sulfate a greyish solid forms. If I recover 0.813 g of solid, what is the yield of the reaction?

 $0.050\,L\,AgNO_{3} solution \frac{0.125\,mol\,AgNO_{3}}{L\,solution} = 6.25\times10^{-3} mol\,AgNO_{3}$

 $0.050 \ L \ Na_2 SO_4 sol \frac{0.250 \ mol Na_2 SO_4}{L \ solution} = 1.25 \times 10^{-2} mol \ Na_2 SO_4$

These numbers don't compare! Apples and oranges. It's not how much you have, it's how much you need.

_			_	_
C	li r	łе	-2	4

 $\text{2 AgNO}_{\text{3}}\left(\text{aq}\right) + \text{Na}_{\text{2}}\text{SO}_{\text{4}}(\text{aq}) \rightarrow \text{Ag}_{\text{2}}\text{SO}_{\text{4}}\left(\text{s}\right) + \text{2 NaNO}_{\text{3}}\left(\text{aq}\right)$

$$6.25\times 10^{-3} mol\ AgNO_{3}\ \frac{1\ mol\ Ag_{2}SO_{4}}{2\ mol\ AgNO_{3}} = 3.125\times 10^{-3} molAg_{2}SO_{4}$$

$$1.25\times10^{-2}\,mol\,Na_{2}SO_{4}\frac{1\,mol\,Ag_{2}SO_{4}}{1\,molNa_{2}SO_{4}}=1.25\times10^{-2}mol\,Ag_{2}SO_{4}$$

These numbers compare!

The silver nitrate runs out first!

Slide 35

2 $AgNO_3$ (aq) + Na_2SO_4 (aq) $\rightarrow Ag_2SO_4$ (s) + 2 $NaNO_3$ (aq)

$$3.125\times 10^{-3} molAg_2SO_4 \frac{311.80~g~Ag_2SO_4}{molAg_2SO_4} = 0.974~gAg_2SO_4$$

This is the "theoretical yield" – what I get if everything goes perfectly. In this reaction, it didn't!

Slide 36

I only got 0.813 g of product!

When 50.00 mL of 0.125 M silver (I) nitrate is mixed with 50.00 mL of 0.250 M sodium sulfate a greyish solid forms. If I recover 0.813 g of solid, what is the yield of the reaction?

$$\begin{aligned} \textit{Yield} &= \frac{\textit{actual stuff}}{\textit{theoretical stuff}} \times 100 \\ \textit{Yield} &= \frac{0.813 \ \textit{g recovered}}{0.974 \ \textit{g theoretical}} \times 100 \\ \textit{Yield} &= 83.4\% \end{aligned}$$

_				
_				
_		 	 	
_		 	 	
_	 	 		
_	 			
_			 	
_			 	
_				
_				
_				
_	 			
_			 	
_	 		 	
_				