Slide 1

Chemical Kinetics
How fast is it?

Slide 2
Reptiles
What happens to a lizard if it gets cold?
He hibernates.

Why?

Slide 3
The Blood is Cold.
... and so is the Chemistry
\square Reptiles are cold-blooded. Their body temperature fluctuates with the external temperature.

- Cell functions are all chemical. If you
change the conditions (temperature
among them), the chemistry changes and they cannot function.

Slide 4

```
Kinetics is all about SPEED
    Rate }=\frac{\Delta\mathrm{ something}}{\Delta\mathrm{ time}
Rate of speed =
    Rate}=\frac{\Delta\mathrm{ distance }}{\Delta\mathrm{ time }}=\frac{\mathrm{ miles traveled }}{\mathrm{ hour }}\equiv\frac{\textrm{km}}{\mathrm{ hour}
Reading speed =
Rate \(=\frac{\text { words read }}{\text { time }}=250\) words \(/\) minut Walking dead \(=\frac{\text { zombies killed }}{\text { second }}\)
```

Slide 5

```
Kinetics is all about the rate which a reaction ocon
```

Kinetics is all about the rate at which a reaction occur
How fast are the reactants turned into products?

- Consider a general reaction:
$A+2 B \rightarrow 3 C$
What happens in this reaction?
1 A and 2 B's make 3 C's

Slide 6

Slide 7

Slide 8

Slide 9

Slide 10
$\mathrm{A}+2 \mathrm{~B} \rightarrow 3 \mathrm{C}$

Time	A	A reacts	B	B reacts	\rightarrow	C	C produced
0 min	65		32			0	
		-1		-2			+3
1 min	64		30			3	
2		-1		-2			+3
$2 \min$	63		28			6	
$60 \min$	53	-10		-20			+30
9		-4	8			36	
90 min	49		0			48	+12

Slide 11
Kinetics is all about the rate at which a reaction occurs.
How fast are the reactants turned into products?

- Consider a general reaction: $A+2 B \rightarrow 3 C$

There are a number of equivalent ways of looking at the rate of the reaction

Slide 12

$$
A+2 B \rightarrow 3 C
$$

- If I want to measure the rate, I need to look at the change in something.

Slide 13

$$
A+2 B \rightarrow 3 C
$$

- If I want to measure the rate, I need to look at the change in something.
- I have 3 somethings:

Slide 14

$$
A+2 B \rightarrow 3 C
$$

\square If I want to measure the rate, I need to look at the change in something.

- I have 3 somethings:
- I could look at how fast A disappears.

I could look at how fast B disappears.

- I could look at how fast C appears.
- All 3 representations of the rate should be equivalent!

Slide 15
Rate

The rate of a reaction is how fast it is occurring. It is a measure of the change in concentration of the chemical species involved.

Slide 16
Rate as a function of time
For my generic reaction $A+2 B \rightarrow 3 C$

I have 3 different chemical species: A, B, and C .

I can measure the rate in terms of ANY OF THE 3 COMPOUNDS

Slide 17
Rate as a function of time
Rate is
Δ concentration $/ \Delta$ time
Or
$\frac{\Delta[A]}{\Delta t}$ the change in [A] per unit time
$\frac{\Delta[B]}{\Delta t}$ the change in $[B]$ per unit time
$\frac{\Delta t}{\Delta[c]}$ $\frac{\Delta t}{t}$ the change in [C] per unit time

Slide 18

Slide 19
Relationship between the different rates
A balanced equation has stoichiometry. This stoichiometry has meaning. $A+2 B \rightarrow 3 C$

If 1 mole of A reacted, 2 moles of B MUST have reacted also
If 1 mole of A reacted, 3 moles of C MUST have been produced.

Slide 20

Look at the different rates				

Slide 21
The Algebra of rates
So, applying stoichiometry, for a given unit of time
$\Delta[C]=-3 \Delta[A], \Delta[B]=2 \Delta[A], 2 \Delta[C]=-3 \Delta[B]$
Or, in terms of the rates, themselves:
$2 \Delta[\mathrm{~A}]=\Delta[\mathrm{B}]$ (or, $\frac{\Delta[\mathrm{A}]}{\Delta t}=\frac{1}{2} \frac{\Delta[\mathrm{~B}]}{\Delta t}$)

$\Delta \mathrm{t}$
$3 \Delta \mathrm{~A}]=-\Delta[\mathrm{C}]$
$\Delta \mathrm{t}, \Delta[\mathrm{A}]=-1$
$\Delta \mathrm{t}$

$3 \frac{\Delta[\mathrm{~A}]}{\Delta \mathrm{t}}=-\frac{\Delta[\mathrm{Cl}}{\Delta \mathrm{t}}$ (or, $\frac{\Delta[\mathrm{A}]}{\Delta \mathrm{t}}=-\frac{1}{3} \frac{\Delta[\mathrm{Cl})}{\Delta \mathrm{t}}$
$3 \frac{\Delta[\mathrm{~B}]}{\Delta \mathrm{t}}=-2 \frac{\Delta[\mathrm{C}]}{\Delta \mathrm{t}}\left(\mathrm{or}, \frac{\Delta[\mathrm{B}]}{\Delta \mathrm{t}}=-\frac{-2}{3} \frac{\Delta[\mathrm{C}]}{\Delta \mathrm{t}}\right)$
The negative sign is because cappears as or B d disapearas

Slide 22
Practical Considerations
You can monitor the concentration of any species that is convenient to measure.

The rate is then calculated by taking the change in concentration divided by the change in time $\frac{\text { final concentration - initial concentration }}{\text { final time - initial time }}$

We then normalize it by dividing out the stoichiometry and
.the rate is always a positive quantity, so take the
absolute value of the number you get.

Slide 23
FOUR different rates
$1 \mathrm{~A}+2 \mathrm{~B}=3 \mathrm{C}$
We normalize for stoichiometry and take the absolute value

Time	Rate A reacts	Rate of reaction	Rate B reacts	Rate of reaction	$\begin{aligned} & \text { Rate C } \\ & \text { reacts } \end{aligned}$	$\begin{aligned} & \text { Rate of } \\ & \text { reaction } \end{aligned}$
0 min						
	$\frac{-1 A}{1 \min }$	$\left\|\begin{array}{\|l\|l\|} \left\lvert\, \frac{1 r m}{1 A} \frac{-1 A}{1 m i n}\right. \\ 1 \end{array}\right\|$	$\frac{-2 \mathrm{~B}}{1 \mathrm{~min}}$	$\left\lvert\, \begin{aligned} & \frac{1}{1 r x n} \frac{-2 B}{2 B} \frac{1}{1 m i n} \\ & =1\end{aligned}\right.$	$\frac{+3 \mathrm{C}}{1 \text { min }}$	$\left\lvert\, \begin{gathered} \left\lvert\, \frac{1 r m}{3 c}\right. \\ \hline 1 \\ 1 \end{gathered}\right.$

Only ONE rate of reaction

Slide 24

$A+2 B \rightarrow 3 C$									
Time	A	Rate A		${ }^{\text {B }}$	Rate B		$\rightarrow{ }^{\text {c }}$	Rate C	
0 min	65			32			0		
		$\frac{-1 \mathrm{~A}}{1 \mathrm{~min}}$	$\frac{1}{\text { min }}$		$\frac{-2 \mathrm{~B}}{1 \mathrm{~min}}$	$\frac{1}{\min }$		$\frac{+3 \mathrm{C}}{1 \mathrm{~min}}$	$\frac{1}{\min }$
1 min	64			30			3		
		$\begin{array}{\|l\|l\|} \hline \frac{-1 \mathrm{~A}}{1 \mathrm{~min}} \\ \hline \end{array}$	$\frac{1}{\frac{1}{m i n}^{n}}$		$\frac{-28}{1 \mathrm{~min}}$	$\frac{1}{\min }$		$\frac{+3 \mathrm{C}}{1 \mathrm{~min}}$	$\frac{1}{\min }$
2 min	63			28			6		
		$\left\lvert\, \begin{gathered} -\frac{10 \mathrm{~A}}{58 \mathrm{~min}} \\ \hline \end{gathered}\right.$	$\begin{array}{\|l\|} \hline \frac{10}{58 \text { min }} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \frac{-20 \mathrm{~B}}{58 \mathrm{~min}} \\ \hline \end{array}$	$\begin{aligned} & \frac{10}{58} \text { min } \end{aligned}$		$\begin{array}{\|l\|l\|l\|l\|l\|l\|} 58 \mathrm{~min} \end{array}$	$\begin{array}{\|l\|} \frac{10}{58 \text { min }} \\ \hline \end{array}$
$\begin{array}{\|l\|} \hline \begin{array}{l} 60 \\ \min \\ \hline \end{array} \\ \hline \end{array}$	53			8			36		
									4

Slide 25

Slide 26
Rate of reaction
ONE number for the reaction, no matter which molecule you were monitoring!

Slide 27
Clicker Question
Suppose I make ammonia from the Haber Process:
$3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{\mathbf{2}_{(\mathrm{g})}} \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
If I mix 3 moles of H_{2} with an excess of N_{2} and find that it takes 24 minutes for completion of the that it takes 24 minutes for completion
reaction, what is the rate of reaction?
A $0.125 \mathrm{~mol} / \mathrm{min}$
A $0.125 \mathrm{~mol} / \mathrm{min}$
B $0.083 \mathrm{~mol} / \mathrm{min}$
C $\quad 0.042 \mathrm{~mol} / \mathrm{min}$

Slide 28
Rate
Rate $=\frac{\text { change in concentration }}{\text { change in time }}$
Rate $=\frac{\Delta \text { concentration }}{\Delta t i m e}$
Rate $=\frac{\text { final concentration }- \text { initial concentration }}{\text { end time }- \text { initial time }}$

Slide 29

$$
\begin{aligned}
& \frac{3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})}>2 \mathrm{NH}_{3(\mathrm{~g})}}{3 \text { moles of } \mathrm{H}_{2} \text { reacts in } 24 \text { minutes: }} \begin{array}{l}
\text { Rate of reaction of } \mathrm{H}_{2}=\frac{0 \mathrm{~mol}-3 \mathrm{~mol}}{24 \mathrm{~min}} \\
=-0.125 \mathrm{~mol} / \mathrm{min}
\end{array} \\
& \text { Rate of } \mathrm{H}_{2} \text { loss }=\frac{3 \mathrm{~mol} \text { lost }}{24 \mathrm{~min}}=0.125 \frac{\mathrm{~mol}}{\mathrm{~min}}
\end{aligned} \quad \begin{aligned}
& \text { Rate of } \mathrm{NH}_{3} \text { production: } \\
& ?
\end{aligned}
$$

Slide 30

$$
\begin{aligned}
& \frac{3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})}{3 \text { moles of } \mathrm{H}_{2} \text { reacts in } 24 \text { minutes: }} \\
& \text { Rate of } \mathrm{NH}_{3} \text { production: } \\
& \quad 3 \mathrm{~mol} \mathrm{H}_{2} \text { react } \frac{2 \mathrm{~mol} \mathrm{NH}}{3} \text { made } \\
& 3 \text { mol } \mathrm{H}_{2} \text { react }
\end{aligned}=2 \mathrm{~mol} \mathrm{NH}_{3} \text { made } .
$$

Slide 31

$$
3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

3 moles of H_{2} reacts in 24 minutes:
Rate of H_{2} loss $=0.125 \frac{\mathrm{~mol}}{\mathrm{~min}}$
Rate of NH_{3} production $=0.0833 \frac{\mathrm{~mol}}{\mathrm{~min}}$
Rate of N_{2} loss $=0.0417 \frac{\mathrm{~mol}}{\mathrm{~min}}$
Rate of reaction $=$???

Slide 32

$$
\begin{aligned}
& \begin{array}{l}
3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \\
\begin{array}{l}
\text { Normalize for stoichiometry and take the apsolyte value: } \\
\text { Rate of reaction }=\left\lvert\, \frac{1}{3}\right. \text { rate of } H_{2} \text { loss }\left|=\left|\frac{1}{3} 0.125 \frac{\mathrm{~mol}}{\mathrm{~min}}\right|\right. \\
=0.0416 \frac{\mathrm{~mol}}{\mathrm{~min}}
\end{array} \\
\quad \text { Rate of reaction }=\left\lvert\, \frac{1}{2}\right. \text { rate } \mathrm{NH}_{3} \text { produced }\left|=\left|\frac{1}{2} 0.0833 \frac{\mathrm{~mol}}{\mathrm{~min}}\right|\right. \\
\quad=0.0416 \frac{\mathrm{~mol}}{\mathrm{~min}}
\end{array} \\
& \begin{array}{l}
\text { Rate of reaction }=\left\lvert\, \frac{1}{1}\right. \text { rate of } N_{2} \text { loss }\left|=\left|\frac{1}{1} 0.0416 \frac{\mathrm{~mol}}{\mathrm{~min}}\right|=\right. \\
0.0416 \frac{\mathrm{~mol}}{\mathrm{~min}}
\end{array} \\
& \text { Rate of reaction }=0.0416 \frac{\mathrm{~mol}}{\min } \text { (unambiguously) }
\end{aligned}
$$

Slide 33
Is the rate of a reaction constant?

- Sometimes...but not usually.

Slide 34
Is the rate of a reaction constant?

- Sometimes...but not always.
\square Eventually, most reactions either:
- Reach completion
- Reach equilibrium (our NEXT topic!)

Slide 35
Is the rate of a reaction constant?

- Sometimes...but not usually.
- Eventually, most reactions either:
- Reach completion
- Reach equilibrium
\square When the concentrations stop changing,
the "rate" is zero. So, the rate isn"
usually constant forever, even if it is
constant for a certain period of time.

Slide 36
What does the rate depend upon?

Slide 37
What does the rate depend upon?
\square Why does a reaction stop?

Slide 38
What does the rate depend upon?
\square Why does a reaction stop?
you run out of a reactant (limiting reagent
you run out
you reach equilibrium

Slide 39
What does the rate depend upon?
\square Why does a reaction stop?

- you run out of a reactant (limiting reagent problem)
- you reach equilibrium (equilibrium problem)
- In either case, it is the concentration that determines when it stops; you either reach equilibrium concentration, or you use up the total concentration of the limiting reagent.

Slide 40

Rates MUST

 depend on concentration!Slide 41

$$
\begin{aligned}
& \text { It's all very logical... } \\
& \text { After all, let's say I want to do the following } \\
& \text { reaction: } \\
& \qquad H_{2}(g)+O_{2}(g) \rightarrow H_{2} O_{2}(g)
\end{aligned}
$$

There's a lot of ways that reaction could happen. But, what's the one thing that definitely MUST happen for the reaction to take place?
H_{2} and O_{2} must find each other - Happy Valentine's Day!

Slide 42
If you want to make friends...
...it helps to have a lot of other people around!
[You aren't going to make any friends sitting in your room watching Netflix! Helpful hint from your Uncle Joe.]

Same for reactions: the more H_{2} and O_{2} that are around, the more likely it is that an H_{2} and an O_{2} will find each other. [Simplifying.]

Slide 43
We really don't care about rates...
Since rates of reaction tend to depend on concentration, any rate I measure is VERY SPECIFIC...and TEMPORARY.

As a reaction proceeds, you are constantly turning reactants into products. The rate is constantly changing.

We use rates a LOT. But rate is a tool to get us to something more generic.

Slide 44
The Rate Law

- Our previous discussion proves that the rate must depend on the concentration - The Rate Law is the expression of the dependence of rate on the concentration of the reactants.

Slide 45

The Rate Law
$\mathrm{A}+2 \mathrm{~B} \rightarrow 3 \mathrm{C}$
We expect the Rate to depend on A or B or both A and B . Rate $\alpha[\mathrm{A}]^{\mathrm{x}}$ or Rate $\alpha[\mathrm{B}]^{y}$ or Rate $\alpha[\mathrm{A}]^{x}[\mathrm{~B}]^{y}$
The superscripts "x" and " " y " are called the orders of the reaction and represent the fact that the rate does not have to depend linearly on the concentration. " x " and " y " are usually integers or half-integers.

> The Rate Law
$\mathrm{A}+2 \mathrm{~B} \rightarrow 3 \mathrm{C}$
For the sake of discussion, assume that the rate depends linearly on both $[A]$ and $[B]$

$$
\text { Rate } \alpha[\mathrm{A}][\mathrm{B}]
$$

To make the proportionality into an equality, we need to introduce the proportionality constant, k, which is called the rate constant Rate $=k[A][B]^{2}$

Slide 47
DON’T BE CONFUSED!
There are 3 terms in kinetics that can easily be mixed up:

Rate
Rate law
Rate constant
They are 3 very different things

Slide 48
DON’T BE CONFUSED!
Rate - the change in concentration as a function of time

Rate law - the relationship between the rate and the concentrations of the reactants

Rate constant- the proportionality constant in the rate law. This is constant for a reaction at a given temperature.

Slide 49
Reading a rate law
Rate $=k[A][B]$

The rate law above should be read as:
"The rate of reaction is $1^{\text {st }}$ order in $\mathrm{A}, 1^{\text {st }}$ order in B, and $2^{\text {nd }}$ order overall"

Slide 50
What do the orders mean?

1. Algebraic: The order is a measure of how strongly the rate depends on
concentration: The higher the order, the more rapidly the rate of the reaction decreases toward 0 .
2. Chemical: The orders are also indicative of the mechanism for the reaction (more later)

Slide 51
A little more kinetics grammar
Rate $=\mathrm{k}[\mathrm{B}]^{2}$
"The rate is $2^{\text {nd }}$ order in B and $2^{\text {nd }}$ order overall."
Rate $=k[A][B]^{2}$
"The rate is $1^{\text {st }}$ order in $\mathrm{A}, 2^{\text {nd }}$ order in B , and $3^{\text {rd }}$ order overall"
law..
The "rate" of a reaction depends on the concentration of reactants.

Mix-up something slightly different, the "rate" will be different.

The "rate" of a reaction is constantly
changing because the amount of reactants is constantly changing.

SOOOO...it's the RATE LAW we care about.

Slide 53
The Rate Law
The rate law gives the dependence of the observed rate on concentration.

As a result, if I know the rate law, I know what "rate" I see no matter what I mix together.

And, as we'll see later, if I know the rate law, I also know exactly how the rate is changing with time.

Slide 54
Initial rates
Since the rate is not constant at all times, I can't really talk about the "rate" of a
reaction in general. As a result, it is more common to talk about the initial rate of a reaction - the rate at the very beginning of a reaction before the concentrations have changed enough to make a huge difference in the rate.

Slide 55
Rate $=k[A]^{\text {some power }}[B]^{\text {some other power }}$
To determine the rate law, I need to know two things:

1. The order of the reaction with respect to each reactant.
2. The rate constant.

Slide 56
Where do the orders of a reaction come
from?
The orders are related to the actual microscopic picture of reaction dynamics.

$$
A+2 B \rightarrow 3 C
$$

The balanced equation gives the overall ratio of reactants to products. It doesn't tell you exactly how the reaction occurs.

Slide 57
$A+2 B \rightarrow 3 C$

One way the reaction could occur is exactly
as written: 2 molecules of B and 1 molecule of A collide with each other and 3 molecules of C result.

This is NOT THE ONLY WAY

Slide 58

$$
\begin{aligned}
& \mathrm{A}+2 \mathrm{~B} \rightarrow 3 \mathrm{C} \\
& \text { Another way this reaction could occur is the } \\
& \text { following sequence of reaction events: } \\
& \text { 1. } \mathrm{A} \rightarrow 2 \mathrm{D} \text { (fast) } \\
& 1 \text { molecule of A falls apart into } 2 \mathrm{D} \\
& \text { 2. } \mathrm{D}+\mathrm{B} \rightarrow \mathrm{E} \text { (slow) } \\
& 1 \text { molecule of } D \text { collides with a molecule of } B \text { to } \\
& \text { form } E \text {. } \\
& \text { 3. } E+E \rightarrow 3 C \text { (fast) } \\
& 2 \text { molecules of } E \text { collide to form } 3 \text { molecules of } C
\end{aligned}
$$

Slide 59
The rate limiting step

1. $\mathrm{A} \rightarrow 2 \mathrm{D}$ (fast)
2. $\mathrm{D}+\mathrm{B} \rightarrow \mathrm{E}$ (slow)
3. $E+E \rightarrow 3 C$ (fast)

Since the $2^{\text {nd }}$ step is slow, the entire rate may only depend on that step. If so, the overall rate will only depend on the [B] since no A is involved

Slide 60
The orders tell us something about the molecular dynamics

If I know the rate law, it tells me something about the overall
reaction dynamics.

$$
A+2 B \rightarrow 3 C
$$

IF Rate $=k[B]$, then the above reaction has a rate limiting step(s)
depending only on B. depending only on B .
If $\mathrm{Rate}=\mathrm{k}[A][B]$, then the above reaction has a rate limiting step(s) depending on A and B .

If Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$, then the reaction occurs in a single step as
written, involving 2 molecules of B and 1 molecule of A colliding.

Slide 61

Knowing the rate
law informs us on
the molecular
reaction
dynamics.

Slide 62
How do we determine the rate law?

- If we know the molecular dynamics, we can simply write the rate law. (For example, if I know 2 B molecules collide in the rate limiting step, then Rate $=\mathrm{k}[\mathrm{B}]^{2}$)

Slide 63
How do we determine the rate law?
If we know the molecular dynamics, we can simply write the rate law. (For
example, if I know 2 B molecules collide in the rate limiting step, then Rate $=k[B]^{2}$)

- More commonly, the rate law is
determined experimentally by measuring the initial rate for a series of reaction mixtures. A process known as the Method of Initial Rates

Slide 64

$$
\begin{aligned}
& \text { Initial rates } \\
& \hline \text { The initial rate of a reaction = the rate }
\end{aligned}
$$ from time $=0$ to a very short time later.

Slide 65

```
A typical rate law problem.
Consider the reaction:
I must run (or have data) from a series of experimental runs of this
I must run (or have data) from a series of experimental runs of this 
Expt#
lllll
```

Slide 66
Step 1 - Writing the generic rate law
I can't write the actual rate law - I don't know enough - but I can write a generic rate law for the reaction:

Rate $=\mathrm{k}\left[\mathrm{NH}_{4}^{+}\right]^{\mathrm{x}}\left[\mathrm{NO}_{2}{ }^{-}\right]^{y}$
(REMEMBER, I don't know k, x, or y at this point.)

Slide 67
Step 2 －A ratio of rates eliminates the rate constant．

Rate $=k\left[\mathrm{NH}_{4}^{+}\right]^{x}\left[\mathrm{NO}_{2}^{-}\right]^{\mathrm{y}}$
1 equation with 3 unknowns is not solvable，BUT I can get rid
of k by looking at the ration of 2 different rates because \mathbf{k} of k by looking at the ration of 2 different rates because k
is constant．
 $\begin{array}{lllll} & 0.100 \mathrm{M} & 0.0050 \mathrm{M} & 1.35 \times 10^{-7} & 298 \\ 2 & 0.100 \mathrm{M} & 0.010 \mathrm{M} & 2.70 \times 10-7 & 298 \\ 3 & 0.200 \mathrm{M} & 0.010 \mathrm{M} & 5.40 \times 10^{-7} & 298\end{array}$

If $\begin{array}{l}\text { compare the rate of experiment } \# 1 \text { to Experiment } \# 2 \text { ，I get a ratio } \\ \text { without } k \text { involved }\end{array}$

Slide 68

```
Step 2- continued
llll
I can write a rate law for any of these experiments.
but I know what the rate law should look like:
        Rate }=k[\mp@subsup{NHH}{4}{+}\mp@subsup{]}{1}{\mathrm{ order 1 }}[\mp@subsup{\textrm{NO}}{2}{-}\mp@subsup{]}{1}{\mathrm{ order }2
        Rate }=k[\mp@subsup{NH⿱⿰㇒一十凵}{+}{+}\mp@subsup{]}{2}{\mathrm{ order }}[\mp@subsup{\textrm{NO}}{2}{-}\mp@subsup{]}{2}{\mathrm{ order 2}
```

Slide 69

```
Step 2 - continued
lllol
    Rate }=k[\mp@subsup{NHH4}{4}{+}\mp@subsup{]}{2}{\mathrm{ order 1 }}[\mp@subsup{\textrm{NO}}{2}{-}\mp@subsup{]}{2}{\mathrm{ order 2}
I can compare these two rates. They are different,
    Rate e
```



```
Conveniently, the "k" cancels. One less
    thing I don't know!
```

Slide 70

```
Step 2- continued
\frac{Expt:#}{1/2ntial (NH4+1}
    \begin{subarray}{c}{0.100\textrm{M}}\\{0.200}\end{subarray}
        Rate 
        Rate 2}=\frac{[N\mp@subsup{H}{4}{+}\mp@subsup{]}{2}{x}[\mp@subsup{NO}{2}{-}\mp@subsup{]}{2}{y}}{
There are only 2 unknowns left, which is still too many, but
    lol
    Experiment noten
```

Slide 71
Step 3 - Use the identical concentrations to
eliminate all but one of the orders

$\frac{1.35 \times 10^{-7}}{2.70 \times 10^{-7}}=\frac{[0.100]\left[1[0.0050]_{1}^{y}\right.}{[0.100][0][0.01]_{2}^{7}}$
This can also be written as:
$\frac{1.35 \times 10^{-7}}{2.70 \times 10^{-7}}=\frac{[0.100]_{1}^{x}}{[0.100]_{2}^{x}} \frac{[0.0050]_{1}^{y}}{[0.010]_{2}^{\text {² }}}$
 $\frac{1.35 \times 10^{-7}}{2.70 \times 10^{-7}}=\frac{|0.0050|^{y}}{\left[\left.0.010\right|_{2} ^{y}\right.}$
We now have 1 equation with 1 unknown, this we can solve!

Slide 72
Step 4 - Solve for the remaining order.

- Sometimes, you can solve just by inspection:

$$
\frac{1.35 \times 10^{-7}}{2.70 \times 10^{-7}}=\frac{[0.0050]_{1}^{y}}{[0.010]_{2}^{y}}
$$

Doing the math results in:
$0.5=(0.5)^{y}$
Clearly, y must be 1

$$
\begin{aligned}
& \text { Step } 4 \text { - Solve for the remaining order } \\
& \text { using logs. } \\
& \text { Whenever you are trying to deal with an exponent, } \\
& \text { you can always solve using logs: } \\
& 0.5=(0.5)^{y} \\
& \text { If you take the } \log ^{2} \text { of both sides: } \\
& \quad \log (0.5)=\log (0.5)^{y} \\
& \text { But the } \log \mathrm{A}^{\mathrm{y}}=y \log \mathrm{~A} \text {, so: } \\
& \log _{(0.5)^{y}}^{\mathrm{y}}=\mathrm{y} \log (0.5) \\
& \text { Which gives: } \log (0.5)=y \log (0.5) \\
& \qquad y=\frac{\log (0.5)}{\log (0.5)}=1
\end{aligned}
$$

Slide 74
The new rate law
We can now rewrite the rate law with the one known order.

Rate $=k\left[\mathrm{NH}_{4}^{+}\right]^{\times}\left[\mathrm{NO}_{2}^{-}\right]^{1}$
To find x, we simply repeat the process using the other experimental data.

Slide 75

(tat	$\underline{\text { Initial [}}$ [$\mathrm{H}_{4} \pm 1$	Initial [NO_{2}-1	Initial Rat) Temp (k)
1	0.100 M	0.0050 M	1.35×10^{-7}	298
2	0.100 M	0.010 M	2.70×10^{-7}	298

Notice that Experiments 2 and 3 have the same $\left[\mathrm{NO}_{2}{ }^{-}\right]$. This means that if we look at the ratio of Rate $_{2} /$ Rate $_{3}$ that term
(along with k) drops out and we only have x left.

Slide 76
Solving for x

$\frac{2.70 \times 10^{-7}}{5.40 \times 10^{-7}}$	$=\frac{[0.100]_{1}^{x}}{[0.200]_{2}^{x}} \frac{[0.010]_{1}^{y}}{[0.010]_{2}^{y}}$
$\frac{2.70 \times 10^{-7}}{5.40 \times 10^{-7}}=\frac{[0.100]_{1}^{x}}{[0.200]_{2}^{x}}$	
0.50	$=0.50^{x}$
x	$=1$

Slide 77
The final rate law
Rate $=k\left[\mathrm{NH}_{4}{ }^{+}\right]^{1}\left[\mathrm{NO}_{2}{ }^{-}\right]^{1}$
The reaction is $1^{\text {st }}$ order in ammonium, $1^{\text {st }}$ order in nitrite, and $2^{\text {nd }}$ order overall. All we need now is k !

Slide 78
Determining the rate constant
The rate constant can easily be determined by using the experimental data. With x and y now know, k is the only unknown.

But we have 3 experiments, which one do we use?

ALL 3 OF THEM!
the experiments

Ideally, k should be identical for all 3 experiments.

Since these are "real" experiments, they have real experimental errors. They might be slightly different for the 3 different mixtures. The best value for k is the average of all 3 trials.

Slide 80

> Rate $=k\left[\mathrm{NH}_{4}^{+}\right]^{1}\left[\mathrm{NO}_{2}^{-}\right]^{1}$
> Rate $_{1}=1.35 \times 10^{-7}=\mathrm{k}(0.100)(0.0050)$ $\mathrm{k}_{1}=2.7 \times 10^{-4}$
> Rate $_{2}=2.70 \times 10^{-7}=\mathrm{k}(0.100)(0.010)$ $\mathrm{k}_{2}=2.7 \times 10^{-4}$
> Rate $_{3}=\begin{gathered}5.40 \times 10^{-7}=\mathrm{k}(0.200)(0.010) \\ \mathrm{k}_{3}=2.7 \times 10^{-4}\end{gathered}$ $\mathrm{k}_{3}=2.7 \times 10^{-4}$

Slide 81
My "real" data isn't really "real"!

- Obviously, this data is too perfect, but you get the idea.
$\square \mathrm{k}_{\text {avg }}=2.7 \times 10^{-4}$ and this is the number we use to complete the rate law:

Rate $=2.7 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\left[\mathrm{NH}_{4}\right]^{1}\left[\mathrm{NO}_{2}^{-}\right]^{1}$ at 298 K
(Remember, k is temp dependent)

Slide 82

Clicker Question

The following data is collected for the reaction:
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

```
[H/[\mp@code{MM)}
0.115\textrm{M}
0.115 M
lll
```


A. Rate $=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{O}_{2}\right]$
B. Rate $=k\left[H_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$
C. Rate $=k\left[\mathrm{O}_{2}\right]^{2}$
D. Rate $=\mathrm{k}\left[\mathrm{H}_{2}\right]^{2}$

Slide 83

T-dependence of k

It shouldn't be a big surprise that the rate of a reaction is related to the energetics of the reaction.

Slide 84

Slide 85

$$
\mathrm{E}_{\mathrm{a}}=\text { Activation Energy }
$$

The tale of a reaction is not limited strictly to the identity and energetics of the products and reactants, there is a path reaction coordinate) that must get followed.

The "hump" represents a hurdle that must be overcome to go from reactants to products.

Slide 86
How do you get over the hump?
If you are at the top
it is easy to fall
t is easy to fal
own into the
valley (on either
side), but how do
you get to the
top?

Slide 87
How do you get over the hump?

Slide 88

$$
\mathrm{T} \text { dependence of } \mathrm{k}
$$

\square The dependence of k on Temperature is given by the Arrhenius equation:

$$
\mathrm{k}=\mathrm{A} \mathrm{e}^{-\mathrm{Ea} / R T}
$$

where A is the Arrhenius constant (collision
factor), E_{a} is the activation energy, R is the ideal
gas constant, and T is the absolute temperature
(Kelvin)

Slide 89
How do we use the Arrhenius Equation?
There are 2 possible ways to use it:

1. Graphically

If I take the In of both sides, I get: $\ln k=-\frac{E a}{R} \frac{1}{T}+\ln A$
Notice, this looks like the equation of a straight line $(y=m x+b)$ where $y=\ln k$, $\mathrm{x}=\frac{1}{T^{\prime}} \mathrm{m}=\frac{-E a}{R}$ and $\mathrm{b}=\ln \mathrm{A}$.

Slide 90
Graphical use of the Arrhenius Equation
This is one way to determine the activation energy and collision (frequency) factor for a reaction: measure the rate constant at a number of different temperatures, plot In k vs. $1 / \mathrm{T}$ and the slope gives you $-\mathrm{E}_{\mathrm{a}} / \mathrm{R}$ and the intercept is $\ln \mathrm{A}$.

Slide 91
If you don't want to make a graph
2. Mathematically

You can also use 2 data points (temperatures and rate
constants) and look at the relative rate $\frac{k_{1}}{k_{1}}=\frac{A e^{-E=E / R T 1}}{}$
 $\frac{\mathrm{K}_{1}}{\mathrm{k}_{2}}=\frac{\mathrm{e}^{-E \mathrm{E} a / R T 1}}{\mathrm{e} \cdot \mathrm{E}=\mathrm{R} / \mathrm{RT} 2}$
taking the log of both sides: $\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{-E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{r_{2}}\right)$

Slide 92
Mathematical use of Arrhenius equation

$$
\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{-E_{a}}{R}\left(\frac{1}{T 1}-\frac{1}{T 2}\right)
$$

Once I've used a pair of data points to
determine E_{a}, I can use the In form of the Arrhenius equation to determine k at any temperature I want

Slide 93

Slide 94

$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NCl}(\mathrm{g})$			
The reaction was studied at $-10^{\circ} \mathrm{C}$.			
$\left[\mathrm{N}_{2}\right]_{0}(\mathrm{M})$	$\left[\mathrm{Cl}_{2}\right]_{0}(\mathrm{M})$	Initial Rate ($\mathrm{M} / \mathrm{min}$)	
0.10	0.20	0.71	
0.20	0.20	1.45	
What is the rate law?			
A. Rate $=180 \mathrm{M}^{-2} \mathrm{~s}^{-1}\left[\mathrm{~N}_{2}\right]\left[\mathrm{Cl}_{2}\right]^{2}$			
B. Rate $=180 \mathrm{M}^{-1} \mathrm{~s}^{-1}\left[\mathrm{~N}_{2}\right]\left[\mathrm{Cl}_{2}\right]$			
c. Rate $=240 \mathrm{M}^{-2} \mathrm{~s}^{-1}\left[\mathrm{~N}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]$			
D. Rate $=180 \mathrm{M}^{-2} \mathrm{~s}^{-1}\left[\mathrm{~N}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]$			
E. Rate $=$	$1800 \mathrm{M}^{-3}$	$\mathrm{s}^{-1}\left[\mathrm{~N}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]^{2}$	

Slide 95

Slide 96
Problem \#2 - solution
The general rate law can be written as:
Rate $=-\Delta[C 12] / \Delta t=k[N O] \times[C 12] y$

$\frac{\text { Rate }}{\text { Rate }}=\frac{0.18}{\text { Rate }}=\frac{k(0.10)(0.10)}{0.36}$
$\frac{\text { Rate } 1}{\text { Rate 2 }}=\frac{0.18}{0.36}=\frac{(0.10)^{y}}{(0.20)^{y}}$
$0.5=0.5^{v}$
$\begin{aligned} \ln (0.5) & =\ln (0.5)^{y} \\ y=1 & =y \ln (0.5)\end{aligned}$

Slide 97
Problem \#2 - solution cont'd

Similarly, by comparing rate 2 to rate 3 , we get:
$\frac{\text { Rate } 2}{\text { Rate } 3}=\frac{0.36}{1.45}=\frac{k(0.10)^{y}(0.20)^{x}}{k(0.20)^{y}(0.20)^{x}}$
Rate $3 \quad 1.45 \quad \mathrm{k}(0.20)^{\mathrm{y}}(0.20)$
$\frac{0.36}{1.45}=\frac{(0.10)^{y}}{(0.20)^{y}}$
$0.248=(0.5)^{r}$
$\ln (0.248)=y \ln (0.5)$
$y=\ln (0.248) \ln (0.5)=2.01$ approximately 2

Slide 98
Problem \#2 - solution cont'd
The rate law can then be written as:
Rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$
To determine the value of the rate constant, simply plug in the data
from the chart and calculate k
$0.18 \mathrm{M} / \mathrm{min}=\mathrm{k}\left(0.10 \mathrm{M}^{2}(0.10 \mathrm{M})\right.$
$0.18 \mathrm{M} / \mathrm{min}=k(0$
$k=180 \mathrm{M}^{-2} \mathrm{~min}^{-1}$
These come out almost exactly the same for all 3 data points. In the
caso of data aith some experimental spead to the numbers.
calculate the k values for
Case of data with some experimental spread to the numbers,
calculate the k values for each set of data and average them.

Slide 99

Problem \#3		
The reation:		
$2 \mathrm{I}_{(\mathrm{aq})}+\mathrm{S}_{2} \mathrm{O}_{\mathrm{B}^{2}(\mathrm{aq})} \rightarrow 6 \mathrm{I}_{\text {(aq) }}+2 \mathrm{SO}_{4} \mathrm{C}^{2}(\mathrm{aq})$		
was studied at $25^{\circ}{ }^{\circ}$. The following results were obtained for the rate ofdisappearance of $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$		
$\frac{[1-1])}{0.080}$ (M)	$\frac{\left.\left[S_{5} \mathrm{O}_{\mathrm{O}^{2}}\right]_{1}\right]_{0}(\mathrm{M})}{}$	$\frac{\text { Initial rate (} \mathrm{M} / \mathrm{s} \text {) }}{12.5 \times 10-6}$
0.040	0.040	${ }_{6} 6.25 \times 10-6$
0.080	0.020	$6.25 \times 10-6$
0.032 0.060	0.040 0.030	5.00010-6 $7.00 \times 10-6$
Determine the rate law and calculate the rate constant.		

Slide 100

Problem \#3 - solution Comparing the first and second reaction mixg gves. 	
$\frac{12.5 \times 1.06}{6.25 \times 10^{6}=}=(0.0080)^{(0.040)}$ $2==^{2}$ $x=1$	
$\begin{aligned} & \text { Comparing the first and third reaction mixes gives: } \\ & \frac{\text { Rate } 1}{\text { Rate } 3}=\frac{\mathrm{k}[\mathrm{I}-]^{\mathrm{x}}\left[\mathrm{~S} 208^{2--} y^{y}\right.}{\mathrm{k}[\mathrm{I}-]^{[}\left[\mathrm{S}_{2} \mathrm{O}^{2-}\right]^{y}} \\ & \frac{12.5 \times 10^{-6}}{6.25 \times 10^{-6}}=\frac{(0.040)^{y}}{(0.020)^{y}} \end{aligned}$	
$\begin{aligned} & 2=2 x \\ & y=1 \end{aligned}$	
	${ }^{100}$

Slide 101

blem \#3 - solution cont'd	
$\underbrace{\text { a }}$	
	${ }^{101}$

Slide 102
Tro 13.57
The activation energy of a reaction is 56.8 $\mathrm{kJ} / \mathrm{mol}$ and the frequency factor is $1.5 \times 10^{11} \mathrm{~s}^{-1}$. Calculate the rate constant of the reaction at 25 C .

Slide 103

The activation energy of a reaction is 56.8 $\mathrm{kJ} / \mathrm{mol}$ and the frequency factor is 1.5×10^{11} s^{-1}. Calculate the rate constant of the reaction at 25 C .
$k=A e^{\frac{-E_{a}}{R T}}$
$k=1.5 \times 10^{11} S^{-1} e^{\frac{-56.8 \times 10^{3} \frac{J}{\text { mol }}}{8.314 \frac{J}{m o l ~ K}}{ }^{(25+273.15 ~ K)}}$
$k=1.5 \times 10^{11} s^{-1} e^{-22.91414}=16.8 \mathrm{~s}^{-1}$ ${ }^{103}$

Slide 104
Tro 13.63
A reaction has a rate constant of $0.0117 / \mathrm{s}$ at 400 K and $0.689 / \mathrm{s}$ at 450 K .
a. What is the value of the rate constant at 425 K ?

Slide 105

A reaction has a rate constant of $0.0117 / \mathrm{s}$
at 400 K and $0.689 / \mathrm{s}$ at 450 K.
$\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{-E_{a}}{R}\left(\frac{1}{T 1}-\frac{1}{T 2}\right)$
$\ln \left(\frac{0.0117}{0.689}\right)=\frac{-E_{a}}{8.314 \frac{J}{m o l ~ K}}\left(\frac{1}{400 \mathrm{~K}}-\frac{1}{450 \mathrm{~K}}\right)$
$-4.076=\frac{-E}{8.314}(0.00250-0.002222)$

$E=121,996 \mathrm{~J} / \mathrm{mol}$

Slide 106

Slide 107

Determine the rate law and k for the following reaction (in a 2.0 L flask) at 400 K:
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$\mathrm{P}_{\mathrm{H} 2} \quad \mathrm{P}_{\mathrm{O} 2} \quad$ Initial Rate Temp
$0.600 \mathrm{~atm} 0.300 \mathrm{~atm} \quad 0.022 \mathrm{~atm} / \mathrm{s} \quad 500 \mathrm{~K}$ $0.300 \mathrm{~atm} 0.300 \mathrm{~atm} \quad 0.012 \mathrm{~atm} / \mathrm{s} \quad 500 \mathrm{~K}$ $0.300 \mathrm{~atm} 0.600 \mathrm{~atm} \quad 0.086 \mathrm{~atm} / \mathrm{s} \quad 500 \mathrm{~K}$ $\begin{array}{lllll}0.300 \mathrm{~atm} & 0.600 \mathrm{~atm} & 0.086 \mathrm{~atm} / \mathrm{s} & 500 \\ 0.300 & \mathrm{~atm} & 0.600 \mathrm{~atm} & 0.103 \mathrm{~atm} / \mathrm{s} \quad 550 \mathrm{~K}\end{array}$

Slide 108
What are the units of k?
A. s^{-1}
B. $\mathrm{atm}^{-1} \mathrm{~s}^{-1}$
C. $\mathrm{atm}^{-2} \mathrm{~s}^{-1}$
D. $\mathrm{atm}^{-3} \mathrm{~s}^{-1}$
E. $\mathrm{atm}^{-4} \mathrm{~s}^{-1}$

