	de	

Thermodynamic Connection

 ${\bf Q}$ and ${\bf G}$ and letters other than ${\bf K}$

Slide 2

Reaction Quotient

What do you call an equilibrium constant when you aren't at equilibrium?

A Reaction Quotient! (Q)

Slide 3

Consider...

1 mole of Hydrogen, 2 moles of Oxygen, and 1 mole of water are mixed in a 2 L flask at 800 K. The equilibrium constant for the formation of steam at 800 K is 1.6 \times 10-6. Find the equilibrium concentrations...yada yada yada

Slide 5

Slide 6

Q tells us where we are

Q = [products NOT at equilibrium] [reactants NOT at equilibrium]

In this case:

$$Q = \frac{[H_2O]^2}{[H_2]^2[O_2]} = \frac{(0.5 \text{ M})^2}{(0.5 \text{ M})^2(1 \text{ M})} = 1$$

Slide 7				
	What does the "Q=1" mean?			
	How should we evaluate Q?			
	Q is just K when I haven't gotten to K, so Q is trying to become K.			
	Compare Q to K		 	
	$K = 1.6 \times 10^{-6}$ at this temperature			
	K = 1.0x10 ° at this temperature		 	
]		
Slide 8]		
	Q=1, K=1.6x10 ⁻⁶			
	A The reaction needs to go right to get to			
	equilibrium B. The reaction needs to go left			
	C. The reaction is at equilibrium D. I don't care because I don't want to			
	justify my answer E. I'm sleeping.			
	L. Till Sleeping.			
l				
Slide 9			 	
	Q = 1		 	
	K = 1.6 x 10 ⁻⁶			
	Q is too BIG		 	
	Q = [products] [products] is too big! [reactants]			
	Reaction must go left to get rid of the products to reach equilibrium.		 	
•			 	

Slide 10	Q vs. K
	If Q>K, too many products, reaction goes left.
	If Q <k, (too="" few="" goes="" many="" products),="" reactants="" reaction="" right.<="" td="" too=""></k,>
	If Q = Keverything is just right!
Slide 11	
	Too many products, so
	$2 H_{2 (g)} + O_{2 (g)} \leftrightarrow 2 H_{2}O_{(g)}$

Initial Change

Slide 12

Equilibrium

K in context

1. Kinetics – How fast?

3. Equilibrium...???

-2x

So, we can determine the sign of the change if we want to!

We've talked about a number of different realms of Chemistry.

2. Thermodynamics – How stable? How hot?

Equilibrium and Thermodynamics

Would it surprise you to know that Equilibrium represents the thermodynamic balance between the products and the reactants?

Equilibrium tells us what the balance should be, but says nothing about how fast (kinetics) it takes to get there.

Slide 14

Gibbs Free Energy

Gibbs Free Energy is the most important thermodynamic variable: it balances enthalpy and entropy.

 $\Delta G = \Delta H - T \Delta S$

If Δ G < 0, what does that mean? Reaction is spontaneous as written. If Δ G > 0, what does that mean? Reaction is spontaneous in the reverse direction.

Slide 15

G sounds a lot like Q!

K (Q) is related to Δ G

- If Δ G < 0, reaction is spontaneous as written (to right). If Δ G > 0, reaction is spontaneous in the reverse direction (to left).
- If Q>K, reaction goes left.
- If Q<K, reaction goes right.
- If Q = K, we're at equilibrium. At equilibrium, \triangle G = 0!!!

Slide 17

As a reaction proceeds, what happens...

You make products from reactants (or make reactants from products) until equilibrium is reached.

Assume Q<K, what does that mean?

Reaction wants to go right. So Δ G...? Δ G < 0

Eventually, you reach equilibrium, Q = K. Δ G=0

 Δ G must depend on concentration!!!

Slide 18

Δ G is "naught"y

What's the difference between Δ G and Δ Go?

- $\Delta~\mbox{G}^{0}$ is at standard conditions:
 - 1. 298 K
 - 2. 1 atm
- 3. Stoichiometric quantities of everything (1 M aqueous, 1 atm gases)

 Δ G is at any arbitrary conditions

How does Δ G depend on concentration?

 $\Delta G = \Delta G^0 + RT \ln Q$

RT In Q is the correction factor for concentration...

This also gives us a way to calculate K!

When we reach equilibrium Q = K! When we reach equilibrium Δ G = 0!

Slide 20

How does ΔG depend on temperature?

 $\Delta G = \Delta G^0 + RT \ln Q$

 $0 = \Delta G^0 + RT In K$

 $\Delta G^0 = -RT In K$

 Δ G⁰ = Δ H⁰ - T Δ S⁰ = - RT In K

AND Δ \mbox{G}^0 IS IN APPENDIX II!!!

Slide 21

Sample Problem

What is the equilibrium constant for the following reaction at 250 °C?

 $CO_{(g)} + 2 H_{2(g)} \leftrightarrow CH_3OH_{(g)}$

 $\Delta H^0 - T \Delta S^0 = - RT In K$

 $\begin{array}{l} \Delta \ H^0 = \ H_f{}^0 \ (products) \ - \ H_f{}^0 \ (reactants) \\ \Delta \ S^0 = \ S_f{}^0 \ (products) \ - \ S_f{}^0 \ (reactants) \end{array}$

Sample Problem

What is the equilibrium problem for the following reaction at 250 °C?

$$\mathsf{CO}_{\,(g)}\,+\,2\,\,\mathsf{H}_{2\,(g)} \leftrightarrow \mathsf{CH_3OH}_{\,(g)}$$

 $\Delta \ H^0 = \Delta H_{r}^0 \ (products) - \Delta H_{r}^0 \ (reactants)$ = (-201.0 kJ) - (-110.5 kJ + 2(0)) = -90.5 kJ

 $\Delta S^0 = S_r^0 \text{ (products)} - S_r^0 \text{ (reactants)}$ = (239.9 J/K) - (197.7 J/K + 2(130.7 J/K))
= - 219.2 J/K

Slide 23

Sample Problem

What is the equilibrium problem for the following reaction at 250 °C?

CO
$$_{(g)}$$
 + 2 H_{2 $_{(g)}$} \leftrightarrow CH₃OH $_{(g)}$
$$\Delta H^0 - T\Delta S^0 = -RT \ lnK$$

$$-90.5 \, kJ - \left((250 + 273.15)K \right) \left(-219.2 \frac{J}{K} \right) = -RT \, lnK$$

$$24,174.5 = -\left(8.314 \frac{J}{molK}\right) (523.15 \, K) lnK$$

Slide 24

Sample Problem

What is the equilibrium problem for the following reaction at 250 °C?

$$\mathsf{CO}_{\,(g)}\,+\,2\,\,\mathsf{H}_{2\,(g)} \leftrightarrow \mathsf{CH_3OH}_{\,(g)}$$

$$24,174.5 = -\left(8.314 \frac{J}{molK}\right) (523.15 \, K) lnK$$

$$-5.56 = lnK$$

$$K = e^{-5.56} = 3.85 \times 10^{-3}$$

	 	 	 _
	 	 	 _
	 	 	-
 	 	 	 _
			_
	 	 	 -
	 	 	 _
	 	 	 _
 	 	 	 _
	 	 	_
	 	 	 _
	 	 	 _
			 _
	 		 _
 	 	 	 _

Clicker Question

What is the K for our favorite reaction at 25° C:

$$2~H_{2~(g)}~+~O_{2~(g)} \leftrightarrow 2~H_2O_{~(g)}$$

Slide 26

(kJ/mol)	
H(g) 218.0 203.3 114.7 H(aq) 0 0 0 0 H*(g) 1536.3 1517.1 108.9 H*(g) 106.76 70.2 180.75 H(g) 106.76 70.2 180.75 00(g) 249.2 231.7 161.1 0.(g) 0 0 0 0.0 0.0 157.3 160.76 00(g) 249.2 231.7 161.1 0.(g) 0 0 0 255.2 0.(g) 142.7 153.2 238.9 H*(g) 0 1.255.8 120.4 109.6 H*(g) 1.255.8 120.4 109.6 H*(g) 1.255.8 120.4 109.6 H*(g) 1.255.8 120.4 109.6 H*(g) 0 0 191.6 H*(g)	
H'(a) 0 0 0 1 103.6 1 105.6 1 105.9 1 105.9 1 105.9 1 105.7 1 105.9 1 105.7 1 105.9 1 105.7 1 105.9 1 105.7 1 105.9 1 105.7 1 105.9 1 105.7 1 105.9 1 105.7 1 105.9 1 105.7 1 105.9 1 105.7 1 105.9 1	
H*(g) 1536.3 1517.1 108.9 H*(g) 0 0 130.7 I(g) 106.76 70.2 180.75 I(g) 250.02 157.3 10.05 I(g) 250.02 157.3 10.05 I(g) 250.02 157.3 10.05 I(g) 0 0 0 255.2 I(g) 142.7 153.2 238.9 I(g) 142.7 153.2 238.9 I(g) 142.7 153.2 238.9 I(g) 1.0 125.8 120.4 109.6 I(g) 1.0 125.8 120.4	1.7
H ₁ (g) 0 0 130.7 ((g) 106.76 70.2 180.75 H ₁ (g) 126.5 1.7 206.6 (H ₂ (g) 25.5 1.7 206.6 (100 249.2 231.7 205.2 (100 249.2 241.8 222.6 188.8 (100 249.2 241.8 222.6 241.8 222.6 188.8 (100 249.2 241.8 222.6 241.8 222.6 241.8 241	
(qg) 106.76 70.2 180.75 70.2 180.75 110.75 1	3.9
HI(g) 26.5 1.7 206.6 0(g) 249.2 231.7 161.1 0(g) 249.2 231.7 161.1 0(g) 249.2 231.7 161.1 0 207.2 163.2 231.7 161.1 0 207.2 163.2 231.7 207.1 0 107.2 163.2 231.7 207.1 0 107.2 163.2 231.7 207.1 0 107.2 163.2 16	
OH (aq) 230.02 157.3 10.90 000) 249.2 231.7 161.1 0.09) 0 0 205.2 0.09) 142.7 163.2 238.9 14.0 (1) -285.8 -237.1 7 14.0 (1) -281.8 -225.6 188.8 14.0 (2) -241.8 -225.6 188.8 14.0 (2) -161.3 -105.3 105.5 123.7 14.0 (3) -47.7 455.5 133.3 105.8 133.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.6 189.8 120.4 199.8 199.8 120.4).79
249.2 231.7 161.1 0,10 161.0 1	
0,(g) 0 0 205,2 0,(g) 142.7 163,2 238,9 143.0 (1) -255.8 237,1 70 145.0 (1) -241.8 222.6 188.8 145.0 (1) -187.8 1-120.4 109.6 10,(g) 1-187.8 1-120.4 109.6 10,(g) 1-187.8 1-120.4 109.6 145.5 153.3 145.0 0 1 11.6 145.0 193.0 19	.90
0,(g) 0 0 205,2 0,(g) 142.7 163,2 238,9 143.0 (1) -255.8 237,1 70 145.0 (1) -241.8 222.6 188.8 145.0 (1) -187.8 1-120.4 109.6 10,(g) 1-187.8 1-120.4 109.6 10,(g) 1-187.8 1-120.4 109.6 145.5 153.3 145.0 0 1 11.6 145.0 193.0 19	
0, (g) 142.7 163.2 238.9 H,O (I) 285.8 237.1 70 H,O (g) 241.8 -228.6 188.8 H,O, (g) 187.8 +120.4 109.6 H,O, (g) 136.3 -105.6 232.7 N,(g) 0 0 0 191.6 N,(g) 46 -16 193 N,(g) 191.6 N,(g) 111.3 N,(g) 20 -26.50 111.3 N,(g) 191.6 N,(g) 20 -26.50 111.3 N,(g) 191.6 N,(g) 20 -27.5 N,(g) 20 -2	
H,O'(1) -285.8 -237.1 70 H,O'(1) -241.8 -228.6 188.8 H,O'(1) -187.8 -120.4 109.6 H,O'(1) -187.8 -120.4 109.6 H,O'(1) -136.3 -105.6 232.7 N(g) -136.3 -105.6 232.7 N(g) 0 0 191.6 NH ₂ (aq) -80.29 -26.50 111.3 NH ₃ (aq) -80.29 -26.50 111.3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9
H.O. (Ú) -187.8 -120.4 109.6 H.O. (g) -136.3 -105.6 232. N(g) 472.7 455.5 153.3 N.(g) 0 0 191.6 Nh3(g) -46.1 -16 191.6 Nh3(q) -80.29 -26.50 111.3 Nh4,*(qq) -133.26 -79.31 111.17	8.8
H ₃ O ₃ (g) -136.3 -105.6 232.7 N(g) 472.7 455.5 153.3 N ₃ (g) 0 0 0 191.6 NH ₂ (g) -46 -16 193 NH ₃ (aq) -80.29 -26.50 111.3 NH ₄ (aq) -133.26 -79.31 111.17	
N(g) 472.7 455.5 153.3 N ₂ (g) 0 0 191.6 NH ₃ (g) -46 -16 -193 NH ₃ (aq) -80.29 -26.50 111.3 NH ₂ *(aq) -133.26 -79.31 111.17	
$N_2(g)$ 0 0 191.6 $NH_3(g)$ -46 -16 193 $NH_3(aq)$ -80.29 -26.50 111.3 $NH_4(aq)$ -133.26 -79.31 111.17	
NH ₃ (g) -46 -16 193 NH ₃ (aq) -80.29 -26.50 111.3 NH ₄ *(aq) -133.26 -79.31 111.17	
NH ₃ (aq) -80.29 -26.50 111.3 NH ₄ +(aq) -133.26 -79.31 111.17	
NH ₄ +(aq) -133.26 -79.31 111.17	
NO ₂ (g) 33.2 51.3 240.1	
N ₂ O(q) 81.6 103.7 220.0	
N ₂ O(g) 81.6 103.7 220.0 N ₂ H ₂ (g) 95.4 159.4 238.5	
N ₂ O ₄ (g) 9.16 99.8 304.4	

Slide 27

$$\begin{array}{l} 2~H_{2~(g)} + O_{2~(g)} \longleftrightarrow 2~H_2O_{~(g)} \\ \Delta G^0 = -RT \ln K \end{array}$$

$$\begin{split} \Delta G^0 = & \text{RT In K} \\ \Delta G^0 = & \sum \Delta G_l^0(\text{products}) - \sum \Delta G_l^0\left(\text{reactants}\right) \\ \Delta G^0 = & \left[2 \times \left(-228.6 \frac{kJ}{mol}\right)\right] - \left[2(0) + 0\right] = -457.2 \frac{kJ}{mol} \\ & -457.2 \frac{kJ}{mol} = -RT \ln K \\ & -457.2 \frac{kJ}{mol} = -\left(8.314 \frac{J}{molK}\right)\left(298 K\right) \ln K \\ & -457.2 \times \frac{10^3J}{mol} = -\left(8.314 \frac{J}{mol K}\right)\left(298 K\right) \ln K \\ & 184.52 = \ln K \\ & K = e^{184.52} = 1.38 \times 10^{80} \end{split}$$

Slide 28	Clicker Question What is the K for our favorite reaction at 1000 K: 2 H _{2 (g)} + O _{2 (g)} ↔ 2 H ₂ O (g)	
Slide 29	-457.2 kJ/mol = -RT ln K -457.2 kJ/mol = -(8.3145 J/mol K)(1000 K) ln K -457.2 x10 ³ J/mol = -(8.3145 J/mol K)(1000 K) ln K 54.988=lnK K=e ^{54.988} = 7.6x10 ²³	
Slide 30	Le Chatelier's Principle It's FRENCH! (Very classy!) Uncle Joe's stress management hints!	
Slide 30	It's FRENCH! (Very classy!)	

Slide 31		
	1 atm O ₂ , 0.5 atm H ₂ and 0.1 atm of H ₂ O are mixed.	
Slide 32	If I shove you, what do you do? A. Shove back B. Step back and absorb the blow C. Get a gun and escalate the fight D. Cry	
Slide 33	If I shove you, what do you do? A. Shove back (Yeah, right!) B. Step back and absorb the blow (NICE!) C. Get a gun and escalate the fight (Seriously, ruin your life over a shove.) D. Cry (Probablybut not constructive.)	

Slide 34]
	In fact, the best move	
	roll with the shove.	
	THAT is Le Chatelier's principle: A system	
	under stress responds to alleviate the stress.	
	Equilibrium reactions are constantly going in both directions. If you stress the reaction in any way, the reactions respond to the	
	stress.	
Slide 35	If I turn down the thermostat in]
5.1.4.6.33	here to 40 degrees, what do you do?	
	You are cold you need to get heat.	
	How would a reaction get heat?	
	One reaction is EXOthermic, one is ENDOthermic. If you turn down the	
	thermostat, the reaction just turns up its thermostat!	
cu l oc		1
Slide 36	If you turn down T	
	you favor the exothermic reaction.	
	The equilibrium shifts to relieve the stress.	
•		

If you turn up the heat...

...you favor the endothermic reaction (absorbing heat).

The equilibrium shifts to accommodate the stress.

Slide 38

$2 H_2 + O_2 \leftrightarrow 2 H_2O$

If I add hydrogen, what does the reaction do?

Make more water to use up the hydrogen!

Slide 39

$2 H_2 + O_2 \leftrightarrow 2 H_2O$ $2 H_2 + O_2 \leftrightarrow 2 H_2O$						
	Е	2 mol	2 mol		5 mol	
	stress	+1 mol				
	I	3 mol	2 mol		5 mol	
You	יve ו	upset 1	the equ	uilil	orium!	

$2 H_2 + O_2 \leftrightarrow 2 H_2O$

If I you remove water from the system, what does the reaction do?

Make more water!

Slide 41

Slide 42

$2 H_2(g) + O_2(g) \leftrightarrow 2 H_2O(g)$

Suppose you increase the Pressure!!!

The reaction makes itself "small"...shifts to the right. 2 moles of water takes up less space than 3 moles of reactants IF they are all gases.

Slide 43	$\frac{H_2O\ (s) \leftrightarrow\ H_2O\ (l)}{\text{A. Left}}$ B. Right c. No effect	
Slide 44	The test ends here Topics for the test: 1. Titration curves 1. Strong acid/strong base 2. Weak acid/strong base or strong acid/weak base	
	3. Buffers 4. Salts 5. Ka or Kb or Kw Soup Problems – mixtures of stuff 1. Ksp 1. Solubility 2. Fractional precipitation 2. Thermodynamics 4. Alt, AS, AG 2. Delta G = Delta H - T delta S 3. K (AG=AG*+RT ln Q)	
Slide 45		
	Don't forget Exam review homework is due at 8 p.m. on Thursday. Complete solutions for exam review homework appear magically on myCourses under "Content" at 9:01 p.m. on Wednesday.	