	le	

Acid/Base Properties of Salts

Hiding in plain sight

Slide 2

Recognizing Bases

Sometimes it seems that all acids and bases are labeled with H⁺ or OH⁻

Acids do have an H+

But a base is ANYTHING that can accept a proton – it doesn't have to have an OH-. Anything with a negative charge or just non-bonding electrons (N, O, P) can act as a base.

The salt formed by the dissociation of an acid is the "conjugate base" of the acid. This must mean that the salt is a base, whether it has an OH- or not.

Slide 3

Pick a salt, any salt

■ How about ammonium acetate, NH₄OAc? An excellent choice.

□SALT = IONIC

- □ Ammonium acetate is an ionic solid.
- □ Ionic solids dissociate in aqueous solution
- Aqueous NH₄OAc will exist as anions and cations.

•				
•	 	 	 	
•		 	 	
•				
-				
-				

The MOST important thing about salts!

 $\mathsf{NH_4OAc}_{\;(\mathsf{aq})} \rightarrow \! \mathsf{NH_4^+}_{(\mathsf{aq})} + \; \mathsf{OAc}_{\;(\mathsf{aq})}$

So what can we say about $\mathrm{NH_4^+}$ and $\mathrm{OAc^-}$ in aqueous solution?

We need to think "backwards". How did NH₄OAc get the NH₄+ in the first place? (Or, more accurately, what is one way it could have gotten it?)

Slide 5

Salts are products of acid/base reactions

You might recall that the reaction of an acid and a base yields a salt and water:

 $NH_4OH + HOAc \rightarrow H_2O + NH_4OAc$

 $NH_3 + HOAc \rightarrow NH_4OAc$

These are the same reaction!

Hey, look! It's our salt

Slide 6

These two reactions are identical

 $NH_3 + H_2O \leftrightarrow NH_4^+ + OH^- K_b(NH_3)$ $NH_3 + H_2O = NH_4OH$

 $NH_4OH + HOAC \rightarrow H_2O + NH_4OAC$ $NH_3 + H_2O + HOAC \rightarrow H_2O + NH_4OAC$ $NH_3 + HOAC \rightarrow NH_4OAC$

NH₄OH is just another way to write aqueous NH₃

This is why I often say that bases don't need to have an OH- because they borrow one from water.

The whole acid + base = salt + water is a slight exaggeration. Sometimes you borrow OH- from water!

A more detailed reaction

Let's stick to the more plain:

 $NH_3(aq) + HOAc \rightarrow NH_4OAc(aq)$

But what are $\mathrm{NH_{3\,(aq)}}$ and HOAc $_{(aq)}?$

Slide 8

Acid (and Base) Dissociation Reactions

$$\begin{array}{c} \mathsf{NH}_{3(\mathsf{aq})} + \mathsf{H}_2\mathsf{O}_{(1)} \leftrightarrow \mathsf{NH}_4^+}_{(\mathsf{aq})} + \mathsf{OH}^-_{(\mathsf{aq})} \qquad \mathsf{K}_\mathsf{b} \\ \\ \mathsf{HOAc}_{(\mathsf{aq})} + \mathsf{H}_2\mathsf{O}_{(1)} \leftrightarrow \mathsf{H}_3\mathsf{O}^+_{(\mathsf{aq})} + \mathsf{OAc}^-_{(\mathsf{aq})} \qquad \mathsf{K}_\mathsf{a} \\ \\ \overset{\mathsf{Hey, look!}}{\underset{\mathsf{biccs}}{\mathsf{of}}} \mathsf{our} \end{array}$$

Slide 9

Putting it all together...

```
\begin{array}{c} \text{NH}_4 \text{OAc}_{\text{(aq)}} \rightarrow \text{NH}_4{}^+\text{(aq)} + \text{OAc}_{\text{(aq)}} \\ \\ \text{NH}_{3(\text{aq})} + \text{H}_2 \text{O}_{(l)} \leftrightarrow \text{NH}_4{}^+\text{ (aq)} + \text{OH}_{\text{(aq)}} & \text{K}_b \\ \\ \text{Base} \quad \text{acid} \quad \text{conjugate} \quad \text{conjugate} \\ \quad \text{acid} \quad \text{base} \\ \\ \text{HOAc}_{\text{(aq)}} + \text{H}_2 \text{O}_{(l)} \leftrightarrow \quad \text{H}_3 \text{O}_{\text{(aq)}} + \quad \begin{array}{c} \text{OAc}_{\text{(aq)}} \\ \text{OAc}_{\text{(aq)}} \\ \text{Acid} \quad \text{base} \end{array} \quad \text{conjugate} \\ \quad \text{acid} \quad \text{base} \end{array}
```

In short...

We have the conjugate acid ($\mathrm{NH_4^+}$) of a base ($\mathrm{NH_3}$ or $\mathrm{NH_4OH}$), and the conjugate base ($\mathrm{OAc^-}$) of an acid (HOAc).

THIS IS A GENERAL RULE!

All salts are the combination of a (conjugate) acid and a (conjugate) base!

An acid is an acid.

A base is a base.

"Conjugate" or not.

And water is both!

Slide 12

K_b becomes K_a as K_a becomes K_b

Just because you're a "conjugate acid" doesn't mean you're not an acid!

 ${\rm NH_4^+(aq)+H_2O~(I)}\leftrightarrow {\rm NH_3~(aq)+H_3O^+(aq)}$ ${\rm K_a{=}K_w/K_b}$

 $\begin{array}{ll} {\color{red}\mathsf{OAc}}_{(\mathsf{aq})} + \mathsf{H_2O}_{(\mathsf{I})} \leftrightarrow \mathsf{OH^{\text{-}}}_{(\mathsf{aq})} + & \mathsf{HOAc}_{\;(\mathsf{aq})} \\ \mathsf{K_b} {=} \mathsf{K_w} \! / \mathsf{K_a} \end{array}$

Slide 14

Important Points

- All acids/bases are conjugate pairs of compounds. It's an equilibrium, they go both ways
- ${\color{red}\square}$ Conjugate reaction pairs have ${\rm K_axK_b}{=}{\rm K_w}$
- For this particular salt it is approximately equally "acidic" and "basic" and so it ends up being neutral. This is not usually the case. The K_a and K_b just happen to be really close in this case.
- In general, you'd need to solve both ICE charts to get the pH...but not always.

Slide 15

Pick a new salt, any salt

- How about sodium acetate, NaOAc? An excellent choice.
- □ Sodium acetate is an ionic solid.
- □ Ionic solids dissociate in aqueous solution
- Aqueous NaOAc will exist as anions and cations.

		-		

Salts dissociate in water

 $NaOAc (aq) = Na^{+} (aq) + OAc^{-} (aq)$

It's a little less obvious what's going on here. But ALL SALTS are made up of an acid (cation) part and a base (anion) part.

It's just that Na $^+$ doesn't look like much of an acid. But again, that's because it borrows from water!

Slide 17

Acid (and Base) Dissociation Reactions

$$\begin{split} & \text{NaOH}_{(aq)} + \text{H}_2\text{O}_{(j)} \leftrightarrow \text{H-OH}_{(j)} + \text{OH}^-_{(aq)} + \text{Na}^+_{(aq)} \quad \text{K}_b \\ \\ & \text{Or: NaOH} \rightarrow \text{Na}^+_{(aq)} + \text{OH}^-_{(aq)} \\ & \text{OH}^-_{(aq)} + \text{H}_2\text{O}_{(j)} \leftrightarrow \text{H-OH}_{(j)} + \text{OH}^-_{(aq)} \quad \text{K}_b \end{split}$$

Slide 18

Putting it all together...

$$\begin{split} &\text{NaOAc}_{(aq)} \rightarrow &\text{Na}^+_{(aq)} + &\text{OAc}^-_{(aq)} \\ &\text{NaOH}_{(aq)} + &\text{H}_2\text{O}_{(l)} \leftrightarrow &\text{OH}^+_{(aq)} + &\text{Na}^+_{(aq)} + &\text{H-OH}_{(l)} \\ \\ &\text{HOAc}_{(aq)} + &\text{H}_2\text{O}_{(l)} \leftrightarrow &\text{H}_3\text{O}^+_{(aq)} + &\text{OAc}^-_{(aq)} \end{split}$$

Putting it all together...

```
\begin{array}{c} \text{NaOAc}_{(aq)} \rightarrow \text{Na+}_{(aq)} + \text{OAC}_{(aq)} \\ \text{NaOH}_{(aa)} + \text{H}_2\text{O}_{()} \leftrightarrow \text{OH-}_{(aa)} + \text{Na+}_{(aq)} + \text{H-OH}_{()} \\ \text{Base} \qquad \text{acid} \qquad \text{conjugate} \qquad \text{conjugate} \\ \text{base} \qquad \text{acid} \\ \text{HOAc}_{(aa)} + \text{H}_2\text{O}_{()} \leftrightarrow \text{H}_3\text{O+}_{(aa)} + \text{OAC}_{(aa)} \\ \text{Base} \qquad \text{acid} \qquad \text{conjugate} \qquad \text{conjugate} \\ \text{acid} \qquad \text{base} \end{array}
```

Slide 20

In short...

We have the conjugate acid (Na+) of a base (NaOH), and the conjugate base (OAc-) of an acid (HOAc).

Slide 21

K_b becomes K_a as K_a becomes K_b

$$\begin{split} \text{NaOAc}_{\text{(aq)}} &\rightarrow \text{Na}^{+}_{\text{(aq)}} + \text{OAc}_{\text{(aq)}} \\ \text{Na}^{+}_{\text{(aq)}} + 2 \text{ H}_{2}\text{O}_{\text{(i)}} \leftrightarrow \text{NaOH}_{\text{(aq)}} + \text{H}_{3}\text{O}^{+}_{\text{(aq)}} \\ \text{(or, if you prefer)} \\ \text{Na}^{+}_{\text{(aq)}} + \text{H}_{2}\text{O}_{\text{(i)}} \leftrightarrow \text{NaOH}_{\text{(aq)}} + \text{H}^{+}_{\text{(aq)}} \text{ } K_{a} = K_{w}/K_{b} \\ \\ \text{OAc}_{\text{(aq)}} + \text{H}_{2}\text{O}_{\text{(i)}} \leftrightarrow \text{OH}_{\text{(aq)}}^{+} + \text{HOAc}_{\text{(aq)}} K_{b} = K_{w}/K_{a} \end{split}$$

But one is strong and the other weak.

 $\begin{array}{l} NaOH_{(aq)} + \ H_2O_{(1)} \leftrightarrow H\mbox{-}OH_{\ (1)} + \ OH^{\mbox{-}}_{(aq)} + \ Na^+_{(aq)} \quad K_b = \infty \\ Na^+_{\ (aq)} + \ H_2O_{\ (1)} \leftrightarrow NaOH_{\ (aq)} + \ H^+_{\ (aq)} \quad K_a = K_w/K_b = 0 \end{array}$

 $\label{eq:hoac} \text{HOAc}_{\;(aq)} + \; \text{H}_2\text{O}_{(I)} \leftrightarrow \text{H}_3\text{O}^+_{\;(aq)} + \; {\color{red}\text{OAc}}^-_{\;(aq)} \;\; \text{K}_a = 1.8 \times 10^{-5}$

 $\begin{aligned} & \underbrace{\mathsf{OAc^-}_{(\mathsf{aq})} + \mathsf{H}_2 \mathsf{O}_{(!)} \leftrightarrow \mathsf{OH^-}_{(\mathsf{aq})} + \ \mathsf{HOAc}_{(\mathsf{aq})}}_{K_b = \frac{K_w}{K_a} - \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10} \end{aligned}$

Slide 23

Net Result

NaOAc gives rise to a single equilibrium reaction that must be considered:

 $\begin{array}{ll} \mathsf{OAc}^{\text{-}}_{(aq)} + \mathsf{H}_2\mathsf{O}_{(I)} \leftrightarrow \mathsf{OH}^{\text{-}}_{(aq)} + & \mathsf{HOAc}_{\ (aq)} \end{array}$

 $K_b = 5.56 \times 10^{-10}$

The salt is a base!!!!

Slide 24

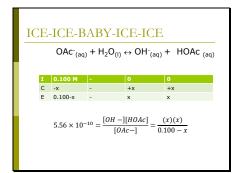
What is the pH of a 0.100 M NaOAc solution?

We need to recognize this as a salt solution.

As soon as we recognize it as a salt, it has an acid half and a base half.

In this case, we can ignore the Na⁺ because it comes from a strong base (it ain't going back!) and so it is only the OAc⁻ that matters.

What is the pH of a 0.100 M NaOAc solution?


It's a base equilibrium so...THERE'S 3 PARTS!

Slide 26

OAC_(aq) + H₂O_(l)
$$\leftrightarrow$$
 OH_(aq) + HOAc_(aq)

$$K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10} = \frac{[OH-][HOAc]}{[OAc-]}$$

Slide 27

How do we solve it?

 $5.56 \times 10^{-10} = \frac{(x)(x)}{0.100 - x}$

Assume x<<0.100

$$5.56 \times 10^{-10} = \frac{(x)(x)}{0.100}$$

$$5.56 \times 10^{-11} = x^2$$
$$x = 7.46 \times 10^{-6}$$

Pretty darn good assumption!

Slide 29

ICE-ICE-BABY-ICE-ICE

$$OAc^{-}_{(aq)} + H_2O_{(I)} \leftrightarrow OH^{-}_{(aq)} + HOAc_{(aq)}$$

$$pOH = -\log(7.46 \times 10^{-6}) = 5.12$$

pH = 14 - pOH = 14 - 5.12 = 8.88

That's a pretty basic little solution we have!

Slide 30

Sample Problem

What is the pH of a solution of 0.0707 M potassium phosphate in water?

Slide 31		1	
0	1 st we need	-	
		-	
		-	
		_	
		_	
		_	
Slide 32] .	
	$\frac{\dots \text{a balanced equation}}{\text{K}_{3}\text{PO}_{4 \text{ (aq)}} \rightarrow 3 \text{ K}^{+}_{\text{(aq)}} + \text{PO}_{4}^{3-}_{\text{(aq)}}}$		
	Now, potassium is the conjugate acid of KOH – a strong base.		
	PO_4^{3-} is the conjugate base of hydrogen phosphate, HPO_4^{2-} (which is the conjugate base of H_2PO_4 , which is the conjugate base of H_3PO_4)		
		_	
Slide 33		1	
	So, there may be 3 equilibria to consider $ \frac{H_3PO_4_{(aq)} + H_2PO_{()} \leftrightarrow H_2PO_4^{-}_{(aq)} + H_3O^{+}_{(aq)}}{K_{a1} = 7.5 \times 10^{-3}} $	-	
	$\begin{array}{l} H_2 P O_4^-(aq) + H_2 O_{(j)} \leftrightarrow H P O_4^{2^-}(aq) + H_3 O^+(aq) \\ H_2 P O_4^-(aq) + H_2 O_{(j)} \leftrightarrow P O_4^{3^-}(aq) + H_3 O^+(aq) \\ H P O_4^{2^-}(aq) + H_2 O_{(j)} \leftrightarrow P O_4^{3^-}(aq) + H_3 O^+(aq) \\ K_{a3} = 5.8 \times 10^{-13} \end{array}$		
	$\kappa_{a3} = 3.0010^{-6}$ But, of course, we need the reverse reactions		
		-	
		-	

So, there may be 3 equilibria to consider

So, there may be 3 equilibria to consider

$$H_2PO_4^-(aq) + H_2O_{(j)} \leftrightarrow H_3PO_4^-(aq) + OH^-(aq)$$

$$K_{B1} = \frac{K_W}{K_{a1}} = \frac{1 \times 10^{-14}}{7.5 \times 10^{-3}} = 1.33 \times 10^{-12}$$

$$HPO_4^{-2}(aq) + H_2O_{(j)} \leftrightarrow H_2PO_4^-(aq) + OH^-(aq)$$

$$K_{B2} = \frac{K_W}{K_{a2}} = \frac{1 \times 10^{-14}}{6.2 \times 10^{-6}} = 1.61 \times 10^{-7}$$

$$PO_4^{-3}(aq) + H_2O_{(j)} \leftrightarrow HPO_4^{-2}(aq) + OH^-(aq)$$

$$K_{B3} = \frac{K_W}{K_{a3}} = \frac{1 \times 10^{-14}}{5.8 \times 10^{-13}} = 1.72 \times 10^{-2}$$
This is the thing I have!

Slide 35

Just take them 1 at a time...

Slide 36

$$K_{b3} = 1.72 \times 10^{-2} = \frac{[OH^-][HPO_4^{2-}]}{[PO_4^{3-}]} = \frac{(x)(x)}{(0.0707 - x)}$$

Try x<<0.0707 $1.72 \times 10^{-2} = \frac{(x)(x)}{(0.0707 - x)} \approx \frac{x^2}{0.0707}$ x=0.0349 which is NOT much less than 0.0707 We have to do it the Quadratic Way!

 $K_{b3} = 1.72 \times 10^{-2} = \frac{[OH^{-}][HPO_{\delta}^{2-}]}{[PO_{\delta}^{2-}]} = \frac{(x)(x)}{(0.0707 - x)}$ $1.216\times10^{-3} - 1.72\times10^{-2} \times = x^{2}$ $0 = x^{2} + 1.72\times10^{-2} \times - 1.216\times10^{-3}$ $X = -b + / - SQRT(b^{2} - 4ac)$ 2a $x = -1.72\times10^{-2} + / - SQRT((1.72\times10^{-2})^{2} - 4(1)(-1.216\times10^{-3}))$ $x = -1.72\times10^{-2} + / - SQRT(5.16\times10^{-3})$ $x = -1.72\times10^{-2} + / - 7.18\times10^{-2}$ $x = -1.72\times10^{-2} + / - 7.18\times10^{-2}$ $x = 2.73\times10^{-2} M$

Slide 38

The 1st equilibrium... $PO_4^{3^{\circ}}_{(aq)} + H_2O_{(1)} \leftrightarrow HPO_4^{2^{\circ}}_{(aq)} + OH^{\circ}_{(aq)}$ I $C = \frac{0.0707 \text{ M}}{-2.73 \times 10^{-2}} - \frac{1}{+2.73 \times 10^{-2}} + \frac{1}{2.73 \times 10^{-2}}$ E $0.0434 = \frac{2.73 \times 10^{-2}}{-2.73 \times 10^{-2}} = \frac{1}{2.73 \times 10^{-2}}$

Slide 39

...leads to the second $HPO_4^{2^*}_{(aq)} + H_2O_{(1)} \leftrightarrow H_2PO_4^{-}_{(aq)} + OH^{-}_{(aq)}$ I

C

-x

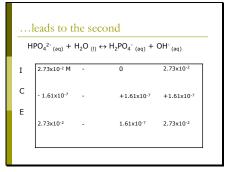
-x

+x

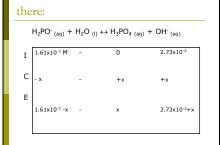
+x

E

2.73x10^{-2}


x

2.73x10^{-2} + x


-			

$$K_{b2} = 1.61 \times 10^{-7} = \frac{[OH^-][H_2PO_4^-]}{[HPO_4^2^-]}$$

$$K_{b2} = 1.61 \times 10^{-7} = \frac{(x)(x+2.73\times 10^{-2})}{(2.73\times 10^{-2}-x)}$$

$$Try \times << 0.0273$$

$$1.61 \times 10^{-7} = \frac{(x)(x+2.73\times 10^{-2})}{(2.73\times 10^{-2}-x)} \approx \frac{(x)(2.73\times 10^{-2})}{2.73\times 10^{-2}}$$

$$1.61 \times 10^{-7} \approx x$$

$$1.61 \times 10^{-7} = x$$
 This is not only small relative to 0.0273, it is just completely insignificant!

Slide 41

Slide 42

If we needed a 3rd chart...it starts

lic		

But if the 2nd one didn't matter...

...the 3^{rd} one matters even less...

$$\begin{split} & \text{H}_2\text{PO}_4\cdot_{(\text{aq})} + \text{H}_2\text{O}_{(1)} \leftrightarrow \text{H}_3\text{PO}_4\cdot_{(\text{aq})} + \text{OH}^-_{(\text{aq})} \\ & K_{b1} = \frac{K_{w}}{K_{a1}} = \frac{1\times 10^{-14}}{7.5\times 10^{-3}} = 1.33\times 10^{-12} \end{split}$$

$$\begin{split} \mathsf{HPO_4^{2-}}_{(\mathsf{aq})} + \mathsf{H_{2O}}_{(\mathsf{I})} &\leftrightarrow \mathsf{H_2PO_4^-}_{(\mathsf{aq})} + \mathsf{OH^-}_{(\mathsf{aq})} \\ K_{b2} &= \frac{\kappa_w}{\kappa_{a2}} = \frac{1 \times 10^{-14}}{6.2 \times 10^{-8}} = 1.61 \times 10^{-7} \end{split}$$

$$\begin{split} & \mathsf{PO_4}^{3^-}{}_{(\mathsf{aq})} + \mathsf{H_2O}{}_{(1)} & \leftrightarrow \mathsf{HPO_4}^{2^-}{}_{(\mathsf{aq})} + \mathsf{OH^-}{}_{(\mathsf{aq})} \\ & K_{b3} = \frac{K_{ly}}{K_{a3}} = \frac{1 \times 10^{-14}}{5.8 \times 10^{-13}} = 1.72 \times 10^{-2} \end{split}$$

Slide 44

Calculating the pH

The result of our 2^{nd} ICE chart is that:

[OH-]= 2.73x10⁻²

What do we do with this number?

Slide 45

Calculating the pH

The result of our ICE chart (1st or 2nd) is that:

 $[OH-]= 2.73x10^{-2}$

What do we do with this number?

- To calculate the pH directly, we need [H_3O^+] We can calculate the pOH, and then get the PH from that.

•			
•			

Calculating the pH from [OH-]

To calculate the pH directly, we need [H₃O⁺]

Recall that K_s=1x10⁺¹⁶ = [H₃O⁺][OH-]

1x10⁺¹⁶ = [H₃O⁺][2,73x10⁻²]

[H₃O⁺] = 3.66x10⁺¹³

pH = - log ((H₃O⁺))

pH = - log (3.66x10⁻¹³)

pH = 12.44

We can calculate the OH and then get the PH for

. We can calculate the pOH, and then get the PH from that.

Recall that pOH + pH = 14

pOH = - log ((OH-)) = - log (2.73x10⁻²) = 1.56

pH = 14 - pOH = 14 - 1.56 = 12.44

Slide 47

A few concluding observations

- □ The pH ended up being 12.44, nicely basic as we expected.
- $\hfill\Box$ This is nothing new: K IS K IS K IS K
- While it is a multiple equilibrium problem, as we saw for the polyprotic acids, if there is a significant difference in K, not all of the equilibria will contribute meaningfully.

Slide 48

For all salts IN WATER:

- 1. Separate into ions.
- 2. The cation is the conjugate acid.

 The anion is the conjugate base.
- For the cation: either add OH- or, if there is one, remove the H+ to see what base "it came from".
- For the anion: add an H+ to see what acid "it came from".
- 5. Look up the K_a and K_b of the "parent" acid/base.
- 6. Ignore strong acids and bases!

Consider 0.100 M NaCl

Is it acid, basic or neutral?

Separate into ions.

NaCl=Na+ + Cl-

The cation (Na+) is the conjugate acid. The anion (Cl-) is the conjugate base.

- A. Acid
- B. Base
- C. Neutral
- D. Both an acid and a base
- E. Your mother

Slide 50

Consider 0.100 M NaCl

Is it acid, basic or neutral?

■ For the cation: either add OH- or, if there is one, remove the H+ to see what base "it came from".

 $Na^+ + OH^- = NaOH$

For the anion: add an H^+ to see what acid "it came from".

 $Cl^- + H^+ = HCl$

Slide 51

Consider 0.100 M NaCl

Is it acid, basic or neutral? Look up the K_a and K_b of the "parent" acid/base.

NaOH – strong base HCl – strong acid

We can ignore both of them so the salt is neutral!

Slide	52

Consider 0.100 M NH₄Cl

Is it acid, basic or neutral?

Separate into ions.

 $NH_4CI=NH_4^++CI^-$

The cation (NH_4+) is the conjugate acid.

The anion (CI-) is the conjugate base.

- A. Acid
- B. Neutral
- C. Basic
- D. None of the Above
- E. All of the above

S	lid	e	53

Consider 0.100 M NH₄Cl

Is it acid, basic or neutral?

□ For the cation: either add OH- or, if there is one, remove the H+ to see what base "it came from".

 $NH_4^+ - H^+ = NH_3$

For the anion: add an H⁺ to see what acid "it came from".

 $CI^- + H^+ = HCI$

Slide 54

Consider 0.100 M NH₄Cl

Is it acid, basic or neutral? Look up the K_a and K_b of the "parent" acid/base.

 $NH_3 - K_b = 1.76 \times 10^{-5}$

HCl – strong acid

We ignore the HCl. The NH_3 counts.

Clickers!

What is the pH of 0.100 M NH₄Cl A. 2.88 B. 11.12 C. 4.75 D. 5.12 E. 8.88 F. 1.00 G. 0.100 H. 2.00 I. None of the above