Slide 1		1	
Sinde 1			
	Integrated Rate Laws		
	Finally a use for calculus!		
Slide 2		1	
	What is a rate?		
	It's a "delta/delta"! $ \text{Rate of reaction} = \frac{\Delta concentration}{\Delta time} $		
	Rate of reaction = ${\Delta time}$ In other words, it is a differential.		
	As you MAY recall from calculus, if you take a small enough delta (difference) you end up with a derivative!		
]	
		•	
Slide 3	A rate as a derivative] .	
	A rate as a derivative		
	Rate of reaction = $\frac{\Delta concentration}{\Delta time}$		
	If ∆time is small enough, we have: -d[reactant]		
	$Rate of reaction = \frac{-d[reactant]}{dt}$ Why ""? Recays you are being reactage, and the rate		
	Why "-"? Because you are losing reactants and the rate should always be positive.		
		J	
		•	

Let's look at the rate law

Rate = k[A]

Rate of reaction =
$$\frac{-d[A]}{dt} = k[A]$$

This is actually an integrable equation.

[Don't worry, this isn't a math class...it's just masquerading as one!]

Slide 5

Solving the equation

I'll show you how to solve it, but it is only the solution that you need to know.

$$\frac{-d[A]}{dt} = k[A]$$

We collect the [A] on one side and get:

$$\frac{d[A]}{[A]} = -kdt$$

Slide 6

Solving the equation

$$\frac{d[A]}{[A]} = -kdt$$

Now you can integrate both sides:

$$\int_{[A]_{initial}}^{[A]_{final}} \frac{d[A]}{[A]} = -\int_{time=0}^{final\ time} kdt$$

Solving the equation

$$\int_{[A]_{initial}}^{[A]_{final}} \frac{d[A]}{[A]} = - \int_{time=0}^{final\ time} k dt$$

$$\ln[A]_{final} - \ln[A]_{initial} = -kt$$

This is the only equation we really need. This is called the "integrated rate law"...well, because we integrated the rate law. ©

Slide 8

What it means...

$$\ln[A]_{final} \ _ \ln[A]_{initial} = -kt$$

What it means is that the concentration at any time decays logarithmically from the initial concentration. If I rearrange the equation a little:

$$\ln[A]_{final} = -kt + \ln[A]_{initial}$$

What does this look like to you?

Yes, it is the equation of a straight line (y=mx+b)!

Slide 9

Using the integrated rate law

If you know k and the initial concentration, you could calculate the concentration at any time.

For example, if I know k=0.015 $s^{\cdot 1}$ and I start with 0.250 M A, how much A is left after 1 minute?

Beware the units. 1 minutes = 60 seconds. Since k is in $s^{\text{-}1}$, I need my time to be in seconds.

Plug and chug, baby!
$$\begin{split} & \ln[A]_{final} = -0.015 s^{1.8} 60 \ s + \ln(0.250 \ M) \\ & \ln[A]_{final} = -2.286 \\ & [A]_{final} = e^{-2.286} = 0.102 \ M \end{split}$$

Using the integrated rate law

$$\begin{split} & \ln[A]_{final} = -kt + \ln[A]_{initial} \\ & \ln[A]_{final} = -0.015 s^{-1*} 60 \ s + \ln(0.250 \ M) \\ & \ln[A]_{final} = -2.286 \\ & [A]_{final} = e^{2.286} = 0.102 \ M \end{split}$$

You can see the power of the integrated rate law. I can determine the remaining concentration of reactants at any second in time! (And, using stoichiometry, I could determine the concentration of products at any second in time!)

Slide 11

Compare the integrated rate law to the rate law

 $\ln[A]_{final} = -kt + \ln[A]_{initial}$

Rate = k[A]

For the same problem, the rate law only allows me to calculate the initial rate of the reaction: Rate = $(0.015~\mathrm{s}^{-1})[0.250~\mathrm{M})$ = $0.00375~\mathrm{M/s}$ I could also calculate the RATE for any specific concentration. But I can't know how long it takes me to get to that new concentration.

Slide 12

Other uses of the integrated rate law

 $\ln[A]_{final} = -kt + \ln[A]_{initial}$

It's a straight line. Scientists LOVE LOVE LOVE straight lines!

If you have a reaction that you KNOW is 1^{\pm} order, you could measure the [A] at a number of different times and plot the data and you'll get a straight line where the slope=-k. So you could use the equation to find the rate constant.

For example, suppose I monitor [A] Time (seconds) 0 0.25 10 0.20 20 0.17 60 0.075 Since this is a first order reaction, the data should obey my integrated rate law. So I plot the In[A] vs time and I should get a straight line.

Slide 14

Time (seconds)	[A] (M)	In[A]
0	0.25	-1.386
10	0.20	-1.609
20	0.17	-1.772
60	0.075	-2.590
Now, I plot the last the best fit straigh	column against the fin	st column and put

Slide 16

So, what's the rate constant?

y = -0.02x - 1.3863

 $In[A]_{final} = -kt + In[A]_{t=0}$

m= slope=-0.02

m=-k

k=-(-0.02)=0.02 s⁻¹

So, if I KNOW it's a 1^{st} order reaction, I can make a graph to find the rate constant. I can also make a graph to find out IF it is 1^{st} order.

Slide 18

Different reaction $2 H_2 + O_2 \rightarrow 2 H_2O$

$2 H_2 + O_2 \rightarrow 2 H_2O$						
Time (seconds)	[H ₂] (M)	In[H ₂]				
0		0.500	-0.69315			
10		0.300	-1.20397			
20		0.200	-1.60944			
60		0.100	-2.30259			

Now, I plot the last column against the first column and put the best fit straight line on it to see IF IF IF it is actually a straight line.

Slide 19

This works for other orders of reaction also.

For a second order reaction:

Rate = $k[A]^2$

You get an integrated rate law

$$\frac{1}{[A]_{final}} = kt + \frac{1}{[A]_{initial}}$$

Same idea, it's a straight line (y = mx+b) where: Slope = k

Intercept = $\frac{1}{[A]_{initial}}$

Also, there's the rare zeroth order

$$Rate = \frac{-d[A]}{d[t]} = k$$

If you integrate

$$\left[\mathsf{A}\right]_\mathsf{t} = -\mathsf{k}\mathsf{t} + \left[\mathsf{A}\right]$$

Slide 23

Those are the easy ones

For more complicated mixed orders like:

Rate = k[A][B]

The math gets much more complicated, so we'll ignore them until you become a chemistry major. But you can do a similar thing.

Slide 24

But a lot of reactions fall into those three categories.

0th order

 $\left[\mathsf{A}\right]_\mathsf{t} = -\mathsf{k}\mathsf{t} + \left[\mathsf{A}\right]$

1st order

 $\ln[A]_{final} = -kt + \ln[A]_{initial}$

2nd order

 $\frac{1}{[A]_{final}} = kt + \frac{1}{[A]_{initial}}$

Slide 25

GRAPH IT!

$\label{eq:Graph It!} Graph \ It!$ $N_2\left(g\right)+3\ Cl_2(g)\to 3\ NCl_3(g)$ Given the following data, determine the rate law.			
Time [I	N ₂ (g)] (M)	Ln((N ₂))	1/[N ₂]
0 min 0	0.40	-0.916	2.5
5 min 0	0.25	-1.386	4.0
10 min 0	0.17	-1.772	5.88
30 min 0	0.04	-3.219	25
60 min 0	0.005	-5.298	200

C	ı: _	_	$^{\circ}$	c
^ I	II C	1	•	×

Try all 3 and see which one fits!

Slide 29

Slide 31

What if I don't want to or can't make a graph?

- A. Find someone who can make a graph.
- B. Copy the answer from the person next to me.
- C. Calculate the rate of the reaction and see if the rate is constant or if the In(rate) is constant or 1/rate is constant.
- D. Calculate the slope between data points and see if they are constant.

Slide 33

What if I don't want to make a graph?

 $N_2(g)+3Cl_2(g)\rightarrow 3NCl_3(g)$

Given the following data, determine the rate law.

Time	[N ₂ (g)] (W)
0 min	0.40
5 min	0.25
10 min	0.17
30 min	0.04
60 min	0.005

3 possibilities

 $\begin{aligned} & \text{Rate} = k \\ & \text{Rate} = k[N_2] \\ & \text{Rate} = k[N_2]^2 \\ & \\ & Rate = \frac{-\Delta[N_2]}{\Delta t} \\ & = \frac{-\{[N_2]_{later\ time} - [N_2]_{earlier\ time}\}}{2} \end{aligned}$

later time — earlier time

Slide 35

k is the rate CONSTANT and it's the slope of the line

[A]_t = -kt + [A]

0th order

1st order

$$\begin{split} & \ln[A]_{final} \ \ _{=} \ _{-} kt + \ln[A] \ _{initial} \\ & \text{Or} \ ln \frac{[A]_{final}}{[A]_{initial}} = -kt \end{split}$$

nd order

 $\frac{1}{\left[A\right]_{final}} = kt + \frac{1}{\left[A\right]_{initial}}$

Slide 36

Slope is all over the place except $\mathbf{1}^{\text{st}}$

order $N_2(g)+3 Cl_2(g) \rightarrow 3 NCl_3(g)$

Given the following date, determine the rate law.

Time (min)	[N ₂ (g)] (M)	slope– 0 th order	slope - 1 st order	K – 2 nd order
0	0.40	$= \frac{-(0.25 - 0.40)}{5 \min - 0 \min}$ $= 0.03 M/min$	$\frac{-[\ln(0.25) - \ln(0.40)]}{5 \min - 0 \min}$ = 0.094	$\frac{\frac{1}{0.25} - \frac{1}{0.40}}{5 \ min} = 0.30$
5	0.25	0.016	0.077	0.376
10	0.17	0.0065	0.0723	0.96
30	0.04	0.00117	0.069	5.83
60	0.005			

,			

_			
C	hil	~ ´	7
`			`

Problem recognition

What's the tell?

How do I know how to handle the problem?

Slide 38

Method of initial rates – Rates measured for different initial mixes

The reaction:

 $2~I_{~(aq)}^{-} + S_2O_8^{~2-}{}_{(aq)} \rightarrow 6~I_{2~(aq)} + 2~SO_4^{~2-}(aq)$

was studied at 25° C. The following results were obtained for the rate of disappearance of ${\rm S_2O_8}^{2-}$

$[I-]_{\alpha}(M)$	$[S_2O_8^{2-}]_0(M)$	Initial rate (M/
0.080	0.040	12.5x10-6
0.040	0.040	6.25x10-6
0.080	0.020	6.25x10-6
0.032	0.040	5.00x10-6
0.060	0.030	7.00x10-6

Slide 39

Integrated rate law – concentration at

Given the following date, determine the rate law.

Time	[N ₂ (g)] (M)
0 min	0.40
5 min	0.25
10 min	0.17
30 min	0.04
60 min	0.005

Slide	40

Once I know the order, how's it work...?

Once I know the order of the reaction, I can use the integrated rate law to determine the concentration at any time.

_			
C	ıا	\sim	1/1
	ш	_	41

The following reaction is $\mathbf{1}^{\text{st}}$ order in Cl_2 and $\mathbf{1}^{\text{st}}$ order overall.

 $H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$

 $2~{\rm M~H_2}$ and $2~{\rm M~Cl_2}$ was placed in a $5~{\rm L~flask}$ at 298 K. The initial rate was $3.82{\rm x}10^{-3}~{\rm M/s}$. What was the rate after 10 minutes? How much HCl had been made after 10 minutes?

Slide 42

As soon as I'm talking about TIME, it's an integrated rate law problem.

The order of the reaction was given. This actually tells me two things:

The Rate Law

The Integrated Rate Law

The following reaction is $\mathbf{1}^{\text{st}}$ order in Cl_2 and $\mathbf{1}^{\text{st}}$ order overall.

$$\mathsf{H_2}\left(\mathsf{g}\right) + \mathsf{Cl_2}\left(\mathsf{g}\right) \to 2\; \mathsf{HCl}(\mathsf{g})$$

 $Rate=k[Cl_2]$

Once I know that, the I.R.L. is automatic:
$$ln\frac{[Cl_2]_{time=t}}{[Cl_2]_{time=0}} = -kt$$

Slide 44

 $Rate = k[Cl_2]$

$$ln\frac{[Cl_2]_{time=t}}{[Cl_2]_{time=0}} = -kt$$

Does this help me? What do I need to know?

Slide 45

The following reaction is $\mathbf{1}^{\text{st}}$ order in Cl_2 and $\mathbf{1}^{\text{st}}$ order overall.

$$\mathsf{H_2}\left(\mathsf{g}\right) + \mathsf{Cl_2}\left(\mathsf{g}\right) \to 2\; \mathsf{HCl}(\mathsf{g})$$

 $2~M~H_2~and~2~M~Cl_2~was~placed~in~a~5~L~flask~at~298~K.~ The initial rate was <math display="inline">3.82x10^{-3}~M/s.~What$ was the rate after 10 minutes? How much HCl had been made after 10 minutes?

lid		

 $Rate = k[Cl_2]$

$$ln\frac{[Cl_2]_{time=t}}{[Cl_2]_{time=0}} = -kt$$

Time=10 minutes $[H_2]_{initial} = 2M$ $[Cl_2]_{initial} = 2M$ $Rate_{initial} = 3.82x10^{-3} \text{ M/s}$

Slide 47

3.82x10⁻³ M/s = k[2M] k=1.91x10⁻³ s⁻¹

This allows me to use the I.R.L.

$$ln\frac{[Cl_2]_{time=t}}{[Cl_2]_{time=0}} = -kt$$

$$\begin{split} \ln\frac{[Cl_2]_{time=t}}{[Cl_2]_{time=0}} &= -kt \\ \ln\frac{[Cl_2]_{time=t}}{2\,M} &= -(1.92\times 10^{-3}s^{-1})\;(600\,s) \\ \ln\frac{[Cl_2]_{10\,min}}{2M} &= -1.152 \\ \frac{[Cl_2]_{10\,min}}{2M} &= e^{-1.152} &= 0.316 \\ [Cl_2]_{10\,min} &= 0.632\,\mathrm{M} \end{split}$$

Slide 49		
	The following reaction is 1st order in Cl ₂ and 1st	
	order overall.	
	$H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$	
	2 M H ₂ and 2 M Cl ₂ was placed in a 5 L flask at	
	298 K. The initial rate was 3.82x10 ⁻³ M/s. What was the rate after 10 minutes? How much HCl	
	had been made after 10 minutes?	
		ı
		_
Slide 50		
	Rate = k[Cl ₂]	
	Rate = $1.92 \times 10^{-3} \text{ s}^{-1} (0.632 \text{ M}) = 1.2135 \times 10^{-3} \text{ M/s}$	
Slide 51]
Silue 31	How much HCI?	
	Just stoichiometry folks	
	I started with 10 moles Cl_2 : $\frac{2 mol}{L} \times 5 L = 10 moles initial$	
	I end up with:	
	$\frac{0.632 mol}{L} \times 5L = 3.16 mol left$	
	So 10 moles initial – 3.16 mol left = 6.84 mol reacted!	
	255C5 IIIIddi 5.10 IIIO ICIL - 0.04 IIIO ICatteu:	
		J

S	lide	52

52			
	$Cl_{2}(g) + H_{2}(g) = 2 HCl(g)$		
	$6.84\ mol\ {\it Cl}_2 reacted rac{2\ mol\ HCl}{1\ mol\ Cl_2}$		
	= 13.68 mol HCl		
ļ			