| Slide 2    K_p                                                                                                                                                                                                                                                                                                      | Slide 1 |                                                                       | ] |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------|---|--|
| Slide 2    Ko   What is the solubility of FeCO,?                                                                                                                                                                                                                                                                    |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         | (well, for us!)                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         | 1                                                                     |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCO <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equetion" 3. ICE chart  What is the balanced equation for dissolving something? |         |                                                                       |   |  |
| What is the solubility of FeCo <sub>3</sub> ?  Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.   Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something? | Slide 2 |                                                                       | ] |  |
| Solubility = MAXIMUM amount of a compound that can dissolve in water.  This is actually an equilibrium.  Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart What is the balanced equation for dissolving something?                                                  |         |                                                                       |   |  |
| Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart What is the balanced equation for dissolving something?                                                                                                                                                           |         |                                                                       |   |  |
| Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart What is the balanced equation for dissolving something?                                                                                                                                                           |         | Solubility = MAXIMUM amount of a compound that can dissolve in water. |   |  |
| Slide 3  Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart What is the balanced equation for dissolving something?                                                                                                                                                           |         | This is actually an equilibrium.                                      |   |  |
| Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                   |         | , i                                                                   |   |  |
| Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                   |         |                                                                       |   |  |
| Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                   |         | 2                                                                     | ] |  |
| Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                   |         |                                                                       |   |  |
| Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                   |         |                                                                       |   |  |
| Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                   |         |                                                                       |   |  |
| Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                   |         |                                                                       |   |  |
| Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                   |         |                                                                       |   |  |
| Equilibrium problems involve 3 parts:  1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                   |         |                                                                       | - |  |
| 1. Balanced equation 2. "K-equation" 3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                                                          | Slide 3 | T 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                              |   |  |
| 2. "K-equation"  3. ICE chart  What is the balanced equation for dissolving something?                                                                                                                                                                                                                              |         |                                                                       |   |  |
| What is the balanced equation for dissolving something?                                                                                                                                                                                                                                                             |         | 2. "K-equation"                                                       |   |  |
| something?                                                                                                                                                                                                                                                                                                          |         |                                                                       |   |  |
|                                                                                                                                                                                                                                                                                                                     |         | What is the balanced equation for dissolving something?               |   |  |
|                                                                                                                                                                                                                                                                                                                     |         |                                                                       |   |  |
|                                                                                                                                                                                                                                                                                                                     |         | 3                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                                     |         |                                                                       | J |  |
|                                                                                                                                                                                                                                                                                                                     |         |                                                                       |   |  |
|                                                                                                                                                                                                                                                                                                                     |         |                                                                       |   |  |
|                                                                                                                                                                                                                                                                                                                     |         |                                                                       |   |  |
| <del></del>                                                                                                                                                                                                                                                                                                         |         |                                                                       |   |  |
|                                                                                                                                                                                                                                                                                                                     |         |                                                                       |   |  |
|                                                                                                                                                                                                                                                                                                                     |         |                                                                       |   |  |
|                                                                                                                                                                                                                                                                                                                     |         |                                                                       |   |  |

#### $FeCO_{3 (s)} \leftrightarrow Fe^{2+}_{(aq)} + CO_3^{2-}_{(aq)}$

What is the "K-equation"?

 $K = [Fe^{2+}][CO_3^{2-}]$ 

The "K" is the PRODUCT of the SOLUBLE ions. Hence, this reaction is called a "solubility product".

$$\begin{split} & \text{K}_{sp} = \text{[Fe}^{2+}\text{][CO}_3{}^{2\text{-}}\text{]} \\ & \text{K}_{sp}\text{(FeCO}_3) \ = \ 3.07\text{x}10^{-11} \end{split}$$

#### Slide 5

What is the solubility of  $FeCO_3$ ?  $K_{sp}(FeCO_3) = 3.07 \times 10^{-11}$ 

#### Slide 6

#### Clicker question

What is the solubility of  $\mathrm{Ba_3(PO_4)_2}$  at 298K?  $K_{sp}(Ba_3(PO_4)_2) = 6x10^{-39}$ 

A. 8x10<sup>-20</sup> M

B. 2x10<sup>-8</sup> M C. 3x10<sup>-9</sup> M

D. 9x10<sup>-9</sup> M

E. 3x10<sup>-20</sup> M

| <br> |
|------|
|      |
| <br> |
|      |
|      |
|      |
| <br> |

 $Ba_3(PO_4)_2$  (s) $\leftrightarrow$  3  $Ba^{2+}$  (aq) + 2  $PO_4^{3-}$ (aq) 0 I S 0 +3x +2x  $K_{sp} = 6x10^{-39} = (3x)^3(2x)^2 = 27x^{3*}4x^2$ 5.56x10<sup>-41</sup> =  $x^5$  $x = 8.89x10^{-9} M = 9x10^{-9} M$ 

#### Slide 8

More common units for solubility...

...are g/L.

If you wanted g/L

 $9 \times 10^{-9} M = \frac{9 \times 10^{-9} mol Ba_3 (PO_4)_2}{L} \frac{602 g}{1 mol} = 5 \times 10^{-6} g / L$ 

#### Slide 9

#### Precipitation Reaction

The reverse reaction:

Solubility Product:  $Ba_3(PO_4)_2$  (s) $\leftrightarrow$  3  $Ba^{2+}$  (aq) + 2  $PO_4^{3-}$ (aq)

Precipitation:

3 Ba<sup>2+</sup> (aq) + 2 PO<sub>4</sub><sup>3-</sup>(aq)  $\leftrightarrow$  Ba<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (s)

It's just K "upside down"

| <br> |      |  |
|------|------|--|
| <br> | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> |      |  |
| <br> | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |

| Slide 10 | How do you know if something precipitates? $Ba_3(PO_4)_2(s) \leftrightarrow 3 Ba^{2+}(aq) + 2 PO_4^{3-}(aq)$ $K_{sp} = 6x10^{-39}$ What is the $K_{sp}$ ?  It's the limit on the amount of ions in solution. $K_{sp} = [Ba^{2+}]^3[PO_4^{3-}]^2$ Remember our old friend "Q"? |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Slide 11 | What's Q?  Q is just the concentrations of products and reactants when you are NOT at equilibrium.                                                                                                                                                                            |

#### Q is less than K means...

- You are NOT at equilibrium.
   You could dissolve more solid: the products (dissolved ions) are too small.

$$\begin{split} &K_{sp} = [Ba^{2+}]^3[PO_4^{3-}]^2 = 6x10^{-39} \\ &Q = [Ba^{2+}]^3[PO_4^{3-}]^2 = \text{any other number} \end{split}$$

#### Q is more than K means...

- 1. You are NOT at equilibrium.
- You have TOO MANY products (dissolved ions). They can't stay dissolved, they need to precipitate out!

13

#### Slide 14

#### A little precipitation question:

500 mL of 0.100 M Fe(NO $_3$ ) $_3$  is mixed with 250 mL of 0.100 M KOH. What, if anything, precipitates from the solution? What mass of precipitate is formed?

14

#### Slide 15

#### What COULD form...?

$$\begin{split} \mathsf{KOH}(\mathsf{s}) &\to \mathsf{K}^+ \; (\mathsf{aq}) \; + \; \mathsf{OH}^\text{-}(\mathsf{aq}) \\ \mathsf{Fe}(\mathsf{NO}_3)_3 \; (\mathsf{s}) &\to \mathsf{Fe}^{3+} \; (\mathsf{aq}) \; + \; 3 \; \mathsf{NO}_3^{-} \; (\mathsf{aq}) \end{split}$$

A beaker of KOH and Fe(NO $_3$ ) $_3$  has neither KOH nor Fe(NO $_3$ ) $_3$ , it's all ions!

| <br> | <br> |  |
|------|------|--|
|      | <br> |  |
| <br> | <br> |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      | <br> |  |
| <br> | <br> |  |
|      |      |  |



#### Slide 17



#### Slide 18

How many "Ks" are there in the beaker?

A. None of the below

B. 3

C. 2

D. 4

E. 5



#### What about KNO<sub>3</sub> and Fe(OH)<sub>3</sub>?

They are both possible products of the reaction. Could they both form? Which one forms first? Do they form together? How would you know?



19

#### Slide 20

When you have 2 possible reactions...

BIGGEST K wins!

Or, in this case, SMALLEST  $\mathrm{K}_{\mathrm{sp}}$ 

 $K_{precipitation} = 1/K_{sp}$ 

Small  $K_{\text{sp}}$  means big  $K_{\text{precipitation.}}$ 

20

#### Slide 21

Precipitation is just the reverse of dissolution.

 $KNO_3$  (s) $\leftrightarrow$  K<sup>+</sup> (aq) +  $NO_3$ -(aq)

 $K_{sp}$  (KNO<sub>3</sub>) = HUGE (K<sup>+</sup> salts are very soluble and nitrates are very soluble)

 $Fe(OH)_3$  (s)  $\leftrightarrow$   $Fe^{3+}$  (aq) + 3  $OH^-$ (aq)

 $K_{sp}$  (Fe(OH)<sub>3</sub>)=2.79x10<sup>-39</sup>

|  | <br> | <br> |
|--|------|------|
|  |      | <br> |
|  |      | <br> |
|  | <br> |      |
|  |      | <br> |
|  |      | <br> |
|  | <br> | <br> |
|  | <br> | <br> |
|  | <br> |      |
|  | <br> | <br> |
|  | <br> |      |

So the only reaction to consider is...

 $Fe(OH)_3$  (s)  $\leftrightarrow$   $Fe^{3+}$  (aq) + 3  $OH^-$ (aq)

 $K_{sp}$  (Fe(OH)<sub>3</sub>)=2.79x10<sup>-39</sup>

All equilibrium problems have 3 parts...yada yada yada...

22

#### Slide 23

 $K_{sp}$  (Fe(OH)<sub>3</sub>)=2.79x10<sup>-39</sup>

 $\begin{aligned} & \text{Fe(OH)}_3 \text{ (s)} \leftrightarrow \text{Fe}^{3+} \text{ (aq)} + 3 \text{ OH}^\text{-}\text{(aq)} \\ & \text{I} \\ & \text{C} \\ & \text{E} \end{aligned}$ 

 $K_{\rm sp} = 2.79 x 10^{-39} = [Fe^{3+}][OH^{-}]^{3}$  What do we know?

23

#### Slide 24

#### Don't forget the dilution

500 mL of 0.100 M Fe(NO<sub>3</sub>)<sub>3</sub> is mixed with 250 mL of 0.100 M KOH.

So...

Dilution is the solution!

0.100 M x 0.500 L = 0.05 mol/0.750 L = 0.0667 M

 $0.100~{\rm M} \times 0.250~{\rm L} = 0.025~{\rm mol}/0.750~{\rm L} = 0.0333~{\rm M}$ 

|  |      | <br> |
|--|------|------|
|  |      | <br> |
|  | <br> | <br> |
|  |      | <br> |
|  |      | <br> |
|  | <br> | <br> |
|  | <br> | <br> |
|  |      | <br> |
|  |      | <br> |
|  |      | <br> |

#### $K_{sp}$ (Fe(OH)<sub>3</sub>)=2.79x10<sup>-39</sup>

 $\begin{tabular}{c|cccc} \hline Fe(OH)_3 (s) \leftrightarrow Fe^{3+} (aq) + 3 OH^-(aq) \\ I & 0 & 0.067 & 0.033 \\ C & +x & -x & -3x \\ E & x & 0.067\text{-}x & 0.033\text{-}3x \\ \hline \end{tabular}$ 

 $K_{sp} = 2.79 \times 10^{-39} = [0.067 \text{-x}][0.033 \text{-3x}]^3$ 

This is an algebraic mess BUT...K is really small.

25

#### Slide 26

#### K is really small...

...which means...  $Fe(OH)_3$  is not very soluble.

So, x is going to be huge! We can use that to our advantage.

We can mathematically precipitate out ALL of the  $Fe(OH)_3$  and then redissolve it!

26

#### Slide 27

#### What is product limiting?

Fe(OH)<sub>3</sub> (s)  $\leftrightarrow$  Fe<sup>3+</sup> (aq) + 3 OH-(aq) I - 0.067 0.033 C - -x -3x E - 0.067-x 0.033-3x 0.067-x = 0 X = 0.067 0.033 - 3x = 0 X=0.011

The hydroxide runs out first!

|  | <br> | <br> |  |
|--|------|------|--|
|  | <br> |      |  |
|  |      |      |  |
|  | <br> |      |  |
|  | <br> |      |  |
|  |      |      |  |
|  |      | <br> |  |
|  | <br> | <br> |  |
|  | <br> |      |  |
|  |      |      |  |
|  |      |      |  |
|  |      |      |  |
|  | <br> |      |  |
|  |      |      |  |
|  |      |      |  |
|  | <br> |      |  |
|  |      |      |  |
|  |      |      |  |

#### What is product limiting?

```
Fe(OH)<sub>3</sub> (s) \leftrightarrow Fe<sup>3+</sup> (aq) + 3 OH'(aq)

[ - 0.067 0.033

C - -0.011 -3(0.011)

E - 0.056 0
0.067-x = 0
X = 0.067
0.033 - 3x = 0
X=0.011
The hydroxide runs out first!
```

#### Slide 29

#### Double your ICE, double your pleasure!

```
K_{sp} = 2.79 \times 10^{-39} = [0.056 + x][3x]^3
Look how much simpler that is. Even better, let's try and solve it the easy way!
```

#### Slide 30

#### Double your ICE, double your pleasure!

```
K_{sp} = 2.79 \times 10^{-39} = [0.056 + x][3x]^3
Assume x<<0.056!
2.79x10^{-39} = [0.056][3x]^3 = 0.056*27x^3
1.8452x10^{-39} = x^3
1.23x10^{-13} = x!
Pretty good assumption.
```

#### Double your ICE, double your pleasure!

0.011 M Fe(OH)<sub>3</sub> precipitate

 $0.011 \text{ M Fe(OH)}_3*0.75 \text{ L}*106.9 \text{ g/mol} = 0.9 \text{ g}$  Fe(OH) $_3$ 

31

#### Slide 32

#### Neat trick, huh?

Actually, that is another little trick in your ICE arsenal...

We know what to do when x is small. Now, if we suspect x is large, we can try this little trick.

In fact, you could always forcibly do a reaction to change the initial condition. After all, in the end the equilibrium will decide where it finishes.

32

#### Slide 33

#### Consider the following problem:

I have 1 Liter of a solution that is  $2.3 \times 10^{-2}$  M in Fe(NO<sub>3</sub>)<sub>2</sub> and  $1.5 \times 10^{-2}$  M in Mg(NO<sub>3</sub>)<sub>2</sub>. I want to separate the two metals by adding K<sub>2</sub>CO<sub>3</sub>.

The 1st issue really is: can I do it?

If their solubilities are too close, they won't effectively separate. It all comes down to  $\rm K_{\rm sp.}$ 

#### I've got a whole bunch of ions

I have 1 Liter of a solution that is  $2.3\times10^{-2}$  M in Fe(NO<sub>3</sub>)<sub>2</sub> and  $1.5\times10^{-2}$  M in Mg(NO<sub>3</sub>)<sub>2</sub>. I want to separate the two metals by adding K<sub>2</sub>CO<sub>3</sub>.

 $\begin{array}{c} Fe(NO_3)_2(s) \leftrightarrow Fe^{2+}(aq) + 2\,NO_3^-(aq) \\ Mg(NO_3)_2(s) \leftrightarrow Mg^{2+}(aq) + 2\,NO_3^-(aq) \\ K_2CO_3(s) \leftrightarrow 2\,K^+(aq) + CO_3^{2-}(aq) \end{array}$ 

I could look up the  $K_{sp}$  for these...but I almost never care about the things  $\bar{I}$  start with...

#### Slide 35

#### I've got a whole bunch of ions

It's the new stuff I could make with the ions...

FeCO<sub>3</sub> MgCO<sub>3</sub> and maybe KNO<sub>3</sub>

 $\begin{array}{c} Fe(NO_3)_2(s) \leftrightarrow Fe^{2+}(aq) + 2\,NO_3^-(aq) \\ Mg(NO_3)_2(s) \leftrightarrow Mg^{2+}(aq) + 2\,NO_3^-(aq) \\ K_2CO_3(s) \leftrightarrow 2\,K^+(aq) + CO_3^{2-}(aq) \end{array}$ 

35

#### Slide 36

#### I've got a whole bunch of ions

 $\begin{aligned} & \mathsf{FeCO_3}\left(\mathsf{s}\right) \leftrightarrow \mathsf{Fe^{2^+}}\left(\mathsf{aq}\right) + \mathsf{CO_3}^{2^-}\left(\mathsf{aq}\right) \\ & \mathsf{MgCO_3}\left(\mathsf{s}\right) \leftrightarrow \mathsf{Mg^{2^+}}\left(\mathsf{aq}\right) + \mathsf{CO_3}^{2^-}\left(\mathsf{aq}\right) \\ & \mathit{KNO_3}\left(\mathsf{s}\right) \leftrightarrow \mathit{K^+}\left(\mathit{aq}\right) + \mathit{NO_3}^-\left(\mathit{aq}\right) \end{aligned}$ 

| <br> |  |
|------|--|
|      |  |
|      |  |
| <br> |  |
| <br> |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
| <br> |  |
| <br> |  |
| <br> |  |
| <br> |  |
|      |  |

| lic |  |  |
|-----|--|--|
|     |  |  |
|     |  |  |

Given the following Ksp values, which salt is LEAST soluble in water?

$$\begin{split} & \mathsf{K}_{\mathrm{sp}}[\mathsf{FeCO}_3] = 3.07 \times 10^{-11} \\ & \mathsf{K}_{\mathrm{sp}}[\mathsf{MgCO}_3] = 6.82 \times 10^{-6} \\ & \mathsf{K}_{\mathrm{sp}}\left[\mathsf{KNO}_3\right] = 1.26 \times 10^2 \end{split}$$

#### Slide 38

Be a little careful about stoichiometry...

Imagine the following chloride salts:

 $K_{sp} (XCI_2) = 12$   $K_{sp} (YCI) = 9$ 

Which salt is MORE SOLUBLE?

- A. XCl<sub>2</sub> B. YCl
- ${\color{red}c.} \ \ I \ need \ more \ information$

Slide 39

$$K_{sp} = 12 = |X|[Cl]^2 = (x)(2x)^2$$

$$12 = 4x^3$$

$$x = \sqrt[3]{\frac{1}{4}} = 1.44$$

$$K_{sp} = 9 = |X|[Cl] = (x)(x)$$

$$9 = x^2$$

$$x = 2\sqrt{9} = 3$$

| <br> | <br> |      |
|------|------|------|
|      | <br> | <br> |
| <br> | <br> | <br> |
| <br> |      | <br> |
|      |      | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      | <br> |
|      |      | <br> |
| <br> |      | <br> |
| <br> |      | <br> |
| <br> | <br> | <br> |
|      |      | <br> |
|      | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      | <br> |
|      |      |      |

| lic |  |  |
|-----|--|--|

I should also be a little careful about concentration...

If the concentrations are very different, even the bigger  $\mathbf{K}_{\mathrm{sp}}$  may not matter.

It's really a question of Q! ( $Q_{sp}$ )

#### Slide 41

The question is when  $Q>K_{sp}$ . But before it can exceed  $K_{sp}$ , Q must equal  $K_{sp}$ , so

$$\begin{split} Q &= K_{sp} = 3.07 \times 10^{-11} = [Fe^{2+}][CO_3^{2-}] \\ &= [2.3 \times 10^{-2}][CO_3^{2-}] \\ &[CO_3^{2-}] = \frac{3.07 \times 10^{-11}}{2.3 \times 10^{-2}} = 1.33 \times 10^{-9} \end{split}$$

As soon as my carbonate is 1 tiny bit above that, precipitation starts.

#### Slide 42

 $\begin{array}{c} Q=K_{\rm sp}=6.82\times 10^{-6}=[Mg^{2+}][CO_3^{2-}]\\ =[1.5\times 10^{-2}][CO_3^{2-}]\\ [CO_3^{2-}]=\frac{6.82\times 10^{-6}}{1.5\times 10^{-2}}=4.55\times 10^{-4}\\ \text{As soon as my carbonate is 1 tiny bit above that, precipitation starts.} \end{array}$ 

But that is waaaay higher than the carbonate required for the iron to precipitate!

| • |      |      |      |  |
|---|------|------|------|--|
| - |      |      |      |  |
| - | <br> | <br> | <br> |  |
| - | <br> |      | <br> |  |
| - | <br> | <br> | <br> |  |
| - | <br> | <br> | <br> |  |
| - | <br> |      | <br> |  |
| - | <br> |      | <br> |  |
| - | <br> |      | <br> |  |
| - | <br> |      | <br> |  |
| _ | <br> |      |      |  |
|   |      |      |      |  |
|   |      |      |      |  |
| • |      |      |      |  |
| - |      | <br> |      |  |
| - | <br> | <br> | <br> |  |
| - | <br> |      |      |  |
|   | <br> |      | <br> |  |
| • | <br> |      | <br> |  |
| - | <br> | <br> | <br> |  |



# Slide 46 Puzzle 2. What is the total mass of K<sub>2</sub>CO<sub>3</sub> that must be added to get the second cation to begin to precipitate? A. 0.0629 g B. 3.179 g C. 3.24 g D. 0.13 g E. 1.12 g

#### Slide 47

The carbonate is actually in TWO places: solution AND THE FeCO<sub>3</sub>!!

How much is in solution?
Well, the carbonate is 4.55x10-4M in a 1 L solution:

n:  

$$1 L \frac{4.55 \times 10^{-4} mol}{L} \frac{138.2 \ g \ K_2 CO_3}{mol}$$

$$= 0.0629 \ g \ K_2 CO_3$$

47

#### Slide 48

We started with 2.3×10 $^{-2}$  M Fe²+ When the magnesium starts to precipitate, the iron concentration is down to:  $6.75\times10^{-8}\,\rm M$ 

How much precipitated?  $2.3x10^{-2} \text{ M originally } -6.75x10^{-8} \text{ M left} = 2.29999325x10^{-2} \text{ M precipitate}.$ 

 $\begin{array}{l} 1\,L\,\frac{2.3\times10^{-2}mol\,Fe^{2+}}{L}\,\frac{1\,mol\,CO_3^{2-}\,1\,mol\,K_2CO_3}{1\,mol\,Fe^{2+}}\,\frac{138.2\,g\,K_2CO_3}{mol}\\ = 3.179\,g\,g\,K_2CO_3 \end{array}$ 

Total mass = 3.1786 g + 0.0629 g = 3.24 g

#### Clicker Questions

What affect would adding acid have on the solubility of  ${\rm Ca(OH)_2}$ ?

- A. Increase the solubility
- B. Decrease the solubilityC. Have no effect on the solubility.

#### Slide 50

The solubility of  $\mathrm{FeBr}_2$  in pure water is 1.2 g/100 mL at 298 K. Would you expect the solubility of  $\mathrm{FeBr}_2$  to be \_\_\_\_\_ in 0.100 M NaBr at 298 K?

- A. higher
- B. lower
- C. the same

#### Slide 51

#### LeChatelier's principle

If you stress an equilibrium, the equilibrium shift to respond to the stress.

 $\text{Ca(OH)}_2 \text{ (s)} \rightarrow \text{Ca}^{2+} \text{ (aq) + 2 OH}^{\text{-}} \text{ (aq)}$ 

$$\begin{split} K_{sp} &= [\text{Ca}^{2+}][\text{OH}^{-}]^2 \\ \text{"Lowering the pH" means increasing [H}_3\text{O}^{+}] \text{ which} \\ \text{will neutralize some of the [OH-]}. If you decrease the amount of hydroxide the reaction needs to} \\ \text{make more to keep it at equilibrium.} \end{split}$$

|      |      | <br> |
|------|------|------|
|      | <br> | <br> |
| <br> | <br> | <br> |
|      |      | <br> |
|      |      | <br> |
|      |      | <br> |
|      | <br> | <br> |
|      |      | <br> |
|      | <br> | <br> |
|      |      |      |
| <br> | <br> | <br> |

| Slide 52 | REACTIONS ARE STUPID!  They don't know where the Ca <sup>2+</sup> or the OH come from.                                                                                                                                                                       |         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|          | 52                                                                                                                                                                                                                                                           |         |
|          |                                                                                                                                                                                                                                                              |         |
|          |                                                                                                                                                                                                                                                              |         |
| Slide 53 |                                                                                                                                                                                                                                                              | <u></u> |
| Siluc 33 | LeChatelier's Principle  Adding NaBr gives you a second source of Br So the reaction needs to make less to                                                                                                                                                   |         |
|          | get to equilibrium.<br>NaBr(s) → Na+ (aq) + Br (aq)                                                                                                                                                                                                          |         |
|          | K <sub>sp</sub> =[Na+][Br]<br>Still stupid!                                                                                                                                                                                                                  |         |
|          | 11                                                                                                                                                                                                                                                           |         |
|          |                                                                                                                                                                                                                                                              |         |
|          |                                                                                                                                                                                                                                                              |         |
| Slide 54 |                                                                                                                                                                                                                                                              | 1       |
| Silue 54 | Sample question  If you have 500.0 mL of a solution that is 0.022 M                                                                                                                                                                                          |         |
|          | in Fe <sup>2+</sup> and 0.014 M in Mg <sup>2+</sup> and add 10.00 mL of 0.100 M $\kappa_2$ CO <sub>3</sub> . What is left in solution after the precipitation? $K_{sp}(\text{FeCO}_3) = 3.07 \times 10^{-11} \\ K_{sp}(\text{MgCO}_3) = 6.82 \times 10^{-6}$ |         |
|          |                                                                                                                                                                                                                                                              |         |

If you have 500.0 mL of a solution that is 0.022 M in Fe<sup>2+</sup> and 0.014 M in Mg<sup>2+</sup> and add 10.00 mL of 0.100 M K<sub>2</sub>CO<sub>3</sub>. What is left in solution after the precipitation? 
Dilution:  $0.022\,M \times \frac{500\,mL}{510\,mL} = 0.0216\,M \text{ Fe}^{2+}$   $0.014\,M \times \frac{500\,mL}{510\,mL} = 0.0137\,M \text{ Mg}^{2+}$   $0.100\,M \times \frac{10\,mL}{510\,mL} = 0.00196\,M\,CO_3$ 

#### Slide 56

$$\begin{split} &K_{sp}(\text{FeCO}_3) = 3.07 \times 10^{\cdot 11} \\ &K_{sp}(\text{MgCO}_3) = 6.82 \times 10^{\cdot 6} \\ &I \text{ expect the FeCO}_3 \text{ to precipitate first} \end{split}$$

#### Slide 57





#### Slide 59



#### Slide 60

| Check MgCO <sub>3</sub> equilibrium                                                                                     |   |
|-------------------------------------------------------------------------------------------------------------------------|---|
| After the FeCO <sub>3</sub> precipitates, the CO <sub>3</sub> <sup>2-</sup> concentration is only 1.56x10 <sup>-9</sup> |   |
| $K_{sp}(MgCO_3) = 6.82x10^{-6}$                                                                                         |   |
| $Q_{sp} = (1.56 \times 10^{-9})(0.0137 \text{ M}) = 2.137 \times 10^{-11}$                                              |   |
| Q << K, so no MgCO <sub>3</sub> precipitates!                                                                           |   |
|                                                                                                                         |   |
|                                                                                                                         | 6 |

|      |      |      |      | <br> |
|------|------|------|------|------|
|      |      |      |      |      |
| <br> |      |      | <br> | <br> |
| <br> |      |      | <br> |      |
| <br> |      |      | <br> | <br> |
| <br> | <br> | <br> |      | <br> |
|      | <br> | <br> |      |      |
| <br> | <br> | <br> |      | <br> |
|      |      |      |      | <br> |
| <br> |      | <br> | <br> | <br> |
|      |      |      | <br> | <br> |
|      |      |      |      |      |



#### Slide 62

#### In terms of the solid:

$$\begin{split} 0.00196 \, \textit{M FeCO}_3 &= \frac{0.00196 \, \textit{mol FeCO}_3}{\textit{L solution}} \, 0.510 \, \textit{L} \\ &= 9.996 \times 10^{-4} \textit{mol} \, \frac{115.86 \, \textit{g}}{\textit{mol}} = 0.1158 \, \textit{g} \end{split}$$

So 0.1158 g of solid  ${\rm FeCO_3}$  have precipitated in the beaker!

#### Slide 63

#### Let's take it a little farther.

Suppose we add another 10.00 mL of 0.100 M  $\rm K_2CO_3$ ?

Well, we do the same thing all over again but we are starting with less  $Fe^{2+}$  and there's some initial  $CO_3^{2-}$  still floating around.

The reaction starts where the previous one left off!

|  |      |      | <br> |  |
|--|------|------|------|--|
|  |      |      |      |  |
|  |      |      |      |  |
|  | <br> |      | <br> |  |
|  | <br> | <br> | <br> |  |
|  | <br> | <br> | <br> |  |
|  | <br> | <br> | <br> |  |
|  | <br> |      |      |  |
|  |      |      |      |  |
|  |      |      |      |  |
|  |      |      |      |  |
|  |      | <br> | <br> |  |
|  | <br> |      |      |  |
|  | <br> | <br> | <br> |  |
|  | <br> | <br> | <br> |  |
|  |      |      |      |  |
|  |      |      |      |  |
|  |      |      |      |  |
|  |      |      |      |  |
|  | <br> |      |      |  |
|  | <br> |      |      |  |
|  | <br> | <br> | <br> |  |
|  | <br> | <br> | <br> |  |
|  | <br> |      | <br> |  |
|  |      |      |      |  |



#### Slide 65

#### We need to do the DILUTION!

We add another 10.00 mL of 0.100 M  $\rm K_2CO_3$ Dilution:

 $0.0196 M \times \frac{510 mL}{520 mL} = 0.01922 M \text{ Fe}^{2+}$ 

 $0.0137 M \times \frac{510 mL}{520 mL} = 0.01344 M Mg^{2+}$ 

 $1.56 \times 10^{-9} M + 0.100 \ M \times \frac{10 \ mL}{520 \ mL} \ 0.001923 \ M \ CO_3$  If you want to keep the FeCO<sub>3</sub> in the ICE

 $0.00196 M \times \frac{510 mL}{520 mL} = 0.001922 M \text{ FeCO}_3$ 

#### Slide 66

### Here's where we start... $FeCO_3(s) \leftrightarrow Fe^{2+}(aq) + CO_3^{2-}(aq)$ 0.001922 0.01922 0.001923 -x -x 0.01922-x 0.001923-x Same problem as before – x is BIG! Same solution as before – precipitate it all and then let it redissolve!



#### Slide 68



#### Slide 69



#### Check MgCO<sub>3</sub> equilibrium

After the FeCO $_3$  precipitates, the CO $_3^{2-}$  concentration is only 1.56x10 $^{-9}$ 

 $K_{sp}(MgCO_3) = 6.82x10^{-6}$ 

 $Q_{sp} = (1.775 \times 10^{-9})(0.01344 \text{ M}) = 2.386 \times 10^{-10}$ 

 $\rm Q << K$ , so no  $\rm MgCO_3$  precipitates!

#### Slide 71

#### If I compare my two results

After 1st addition:

- 0.1158 g FeCO<sup>3</sup>
  0.0196 M Fe<sup>2+</sup>
  1.56x10<sup>-9</sup> M CO<sup>3</sup>
- 0.0137 M Mg<sup>2+</sup>

After 2<sup>nd</sup> addition:

- 0.2317 g FeCO<sub>3</sub>
  0.01730 M Fe<sup>2+</sup>
  1.775x10<sup>-9</sup> M CO<sub>3</sub><sup>2-</sup>
  0.01344 M Mg<sup>2+</sup>

Almost all the  ${\rm CO_3}^{2^{\circ}}$  precipitates each time.

I've doubled the amount of FeCO<sub>3</sub>.

The  $Fe^{2+}$  is dropping and the  $CO_3^{2-}$  is gradually increasing.

The Mg<sup>2+</sup> is being diluted but the actual amount dissolved isn't changing

#### Slide 72

#### What happens to the Mg<sup>2+</sup>?

The  $\mathrm{CO_3^{2-}}$  is creeping upwards. Eventually, you'll get to the point at which it precipitates!

When...? Check  $K_{sp}!!!$ 

(Note: There is a dilution issue, so we'll use the undiluted values to get a ballpark

 $K_{sp}(MgCO_3) = 6.82x10^{-6} = [Mg^{2+}][CO_3^{2-}]$ 

|   | <br> | <br> |  |
|---|------|------|--|
|   |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
| • | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
| • |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
| • |      | <br> |  |
|   |      |      |  |
|   |      |      |  |
| ٠ | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
| • |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
| • |      | <br> |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
|   | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
| • |      |      |  |
|   |      |      |  |
|   |      |      |  |

#### What happens to the Mg<sup>2+</sup>?

At all times, BOTH equilibria are in play IF the concentrations are high enough. At first only the FeCO<sub>3</sub> equilibrium is an issue because there's not enough  $\mathrm{CO}_2$ \* to exceed the MgCO<sub>3</sub>  $\mathrm{k}_{50}$ . Once it kicks in, however, BOTH equilibria must be satisfied all the time. So, when is this..?  $\mathrm{K}_{50}(\mathrm{MgCO}_3) = 6.82 \times 10^{-6} = [\mathrm{Mg}^{2+}][\mathrm{CO}_3^{2-}]$ 

6.82×10<sup>-6</sup> =[0.014 M][CO<sub>3</sub><sup>2-</sup>]

 $[{\rm CO_3}^2]{=}4.87{\rm x}10^{-4}$  M So, until the  ${\rm CO_3}^{2\cdot}$  concentration has increased to about  $5{\rm x}10^{-4}$  M, the  $Mg^{2+}$  won't do anything!

#### Slide 74

#### If I compare my two results

After 1st addition:

- 0.1158 g FeCO<sup>3</sup>
  0.0196 M Fe<sup>2+</sup>
  1.56x10<sup>-9</sup> M CO<sup>3</sup>
- 0.0137 M Mg<sup>2+</sup>

After 2<sup>nd</sup> addition:

- 0.2317 g FeCO<sub>3</sub>
  0.01730 M Fe<sup>2+</sup>
  1.775×10<sup>-9</sup> M CO<sub>3</sub><sup>2-</sup>
  0.01344 M Mg<sup>2+</sup>

Almost all the  ${\rm CO_3}^{2^{\circ}}$  precipitates each time.

I've doubled the amount of FeCO<sub>3</sub>.

The  $Fe^{2+}$  is dropping and the  $CO_3^{2-}$  is gradually increasing.

The Mg<sup>2+</sup> is being diluted but the actual amount dissolved isn't changing

You could keep doing this until virtually all the  $FeCO_3$  is gone EXCEPT there is also  $Mg^{2+}$  in solution.

#### Slide 75

#### When...?

Depends on the FeCO<sub>3</sub> equilibrium!

When the Fe²+ concentration has dropped enough to allow the  ${\rm CO_3}^2$ - concentration to get high enough!

 $K_{sp}(FeCO_3) = 3.07x10^{-11} = [Fe^{2+}][4.87x10^{-4}]$ 

[Fe<sup>2+</sup>]=6.304x10<sup>-8</sup> M

So, we need to precipitate enough Fe $^{2+}$  to drop the initiall 0.22 M Fe $^{2+}$  down to 6.304x10 $^{-8}$  M  $\,$  (ignoring

|      | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |

#### In terms of amounts:

$$\begin{split} &\frac{0.22\,mol\,Fe^{2+}}{L}0.500L = 0.11\,mol\,\frac{55.85\,g}{mol} = 6.14\,g\,Fe^{2+}\\ &\frac{6.30\times10^{-8}\,mol\,Fe^{2+}}{0.500L} = 3.15\times10^{-8}\,mol\,\frac{55.85\,g}{mol}\\ &= 1.76\times10^{-6}\,g\,Fe^{2+}\\ &\frac{1.76\times10^{-6}\,g\,Fe^{2+}left}{6.14\,g\,Fe^{2+}initial}\times100 = 2.87\times10^{-5}\%\,left \end{split}$$

 $100\% - 2.87 \times 10^{-5}\% left = 99.99997\%~precipitated!$  Pretty good!

#### Slide 77

#### Once the Mg<sup>2+</sup> starts precipitating...

There is still a wee bit of Fe<sup>2+</sup> left that will co-precipitate with the Mg<sup>2+</sup>.

There ain't a ton, so you are precipitating mostly pure  $Mg^{2+}$  in this case. But that depends on how different the  $K_{sp}$  is. If they were closer together, you might have more left.

Only the first compound to precipitate will precipitate in pure form!

| <br> | <br> |
|------|------|
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |