Slide 1			
	Chemical Equilibrium Acids & Bases in Aqueous		
	Acids & Bases in Aqueous Solution		
Slide 2]	
	K is K is K is K		
	No matter what type of reaction you are talking about – equilibrium properties remain the same.		
	K _c , K _p , K _a , K _b , K _w , K _{sp} , K _f		
	The subscripts refer to certain specific TYPES of equilibria, but		
]	
Slide 3]	
	K is K is K is K		
		,	
		,	
]	

Slide 4]	
	What is an acid?		
	Bronsted-Lowry definition: An acid is a proton donor.		
	So, what's a base?		
	Bronsted-Lowry definition: A base is a proton acceptor.		
	p. oton deceptor.		
l		_	
		_	
		_	
Slide 5	They go togetherlike carrots and peas,	_	
	Forrest.		
	If you are going to donate a proton, something must accept it.	_	
	You can't really be an acid without a base.		
	· ·	_	
		_	
Į			
		_	
		_	
		_	
Slide 6			
	What's the most common acid?		
	Water!!		
	H-OH, it has a proton it can donate.		
		_	
•		_	
		_	
		-	

Slide 7			
	What's the most common base?		
	Water!		
	• •	-	
	H - O - H		
	0 0		
	It has overa electrons on the overgon, so a	-	
	It has extra electrons on the oxygen, so a proton can stick to it.		
		-	
		-	
		-	
		1	
Slide 8		-	
	Water is special		
	it is amphoteric: it can act as an acid or a		
	base.	-	
	It's not the only compound that can, we'll		
	see other's later.		
		-	
	It also means that most Bronsted-Lowry acids or bases can dissolve in water.		
	acius di bases can dissolve in water.		
		-	
		-	
Slide 9		7	
Silue 9	XX7 1'1	-	
	We like water		
	Acids and bases like water		
	So, acids and bases are mostly found as	-	
	aqueous solutions here.		
		-	
	Like all solutions, the concentration is a critical parameter.		
	critical parameter.		
		-	
		4	
		•	

Slide 10	All solutions are created equal Like any other aqueous solution, a solution of either an acid or base is defined by its concentration. So what's this thing called pH?	
Slide 11	pH is concentration The pH scale is just a logarithmic scale for the Molarity of the protons in the solution. The pH scale is logarithmic (the difference between pH=1 and pH=2 is a factor of 10) pH is concentration	
Slide 12	Damn those logs pH = - log [H+] [x] always means "concentration of x" [H+] should be in M. pH is ONLY the concentration of H+-	

Example

0.1 M HCl solution. What's the pH? $Implicitly, \ you \ must \ recognize \ that: \\ HCl_{(aq)} \rightarrow H^+{}_{(aq)} + Cl^-{}_{(aq)}$

$$\label{eq:continuous} \text{Or,} \qquad \text{HCl}_{(\text{aq})} \, + \, \text{H}_2 \text{O}_{(\text{I})} \rightarrow \text{H}_3 \text{O}^+_{(\text{aq})} + \, \text{Cl}^-_{(\text{aq})}$$

Slide 14

What is pH?

 $pH = - log [H_3O^+] = - log [H^+]$

 $\rm H_3O^+$ is just an $\rm H^+ + \rm H_2O$

Protons don't float around freely in water, they ALWAYS hook up with a water molecule.

Slide 15

Example

0.1 M HCl solution. What's the pH? $Implicitly, \ you \ must \ recognize \ that: \\ HCl_{(aq)} \rightarrow H^+_{(aq)} + Cl^-_{(aq)}$

$$\label{eq:continuous} \text{Or,} \qquad \text{HCl}_{(\text{aq})} \, + \, \text{H}_2 \text{O}_{(\text{I})} \rightarrow \text{H}_3 \text{O}^+_{(\text{aq})} + \, \text{Cl}^-_{(\text{aq})}$$

 $pH = - log [H^+] = - log [H_3O^+]$ pH = - log (0.1 M) = 1.0

Slide 16

We made an assumption?

We assumed 100% of the HCl dissociated!

$$\mathsf{HCI}_{(\mathsf{aq})} o \mathsf{H^+}_{(\mathsf{aq})} + \mathsf{CI^-}_{(\mathsf{aq})}$$

That's why 0.1 M HCl gave me 0.1 M $\rm H^{\scriptscriptstyle +}$

Suppose only 75% of the HCl dissociated?

Slide 17

75% dissociated means?				
$HCI_{(aq)} \rightarrow H^+_{(aq)} + CI^{(aq)}$				
I	0.1 M	0 M	0 M	ı
С				
E				

Slide 18

$\frac{75\% \text{ dissociated means?}}{\text{HCl}_{(aq)} \rightarrow \text{H}^+_{(aq)} + \text{Cl}^{(aq)}}$					
I	0.1 M	0 M	0 M		
С	-x	+x	+x		
E	75% left	x	x		

•		

Slide 19

Slide 21

What's my point?

- pH is NOT NOT NOT the concentration of the acid. It's the concentration of the H+ (or H₃O+ same thing) that fell off the acid.
- ${\bf 2}.\;$ To determine the actual pH, I need to know how much acid dissociated.
- 3. ICE charts are good for a lot of different

Slide 22		
	Why would the acid not 100% dissociate?	
Slide 23	So if I'm looking for pH I need to know the H ₃ O+ concentration. The H ₃ O+ concentration WHEN? At equilibrium, of course. Before that, the system isn't stable and it is constantly changing.	
Slide 24	Acid Dissociation Reactions This is just a specific type of reaction. Referring to Bronsted-Lowry acids: proton donors An acid is only an acid when in the presence of a base Water is the universal base	

		١.	_	
•	IIО	е	•	-

General K_a Reaction

The general form of this reaction for any generic acid (HA) is:

Slide 26

Shorthand Notation

Sometimes the water is left out:

$$\mathsf{HA}_{(\mathsf{aq})} \leftrightarrow \quad \mathsf{A}^{\text{-}}_{(\mathsf{aq})} \quad + \quad \mathsf{H^{+}}_{(\mathsf{aq})}$$

This is simpler, but somewhat less precise. It looks like a dissociation reaction, but it doesn't look like an acid/base reaction.

Slide 27

A sample problem

What is the pH of a 0.100 M HOAc solution? The $\rm K_a$ of HOAc = 1.8 x $\rm 10^{-5}$

Slide 28		1	
	A sample problem		
	What is the pH of a 0.100 M HOAc solution? The K_a of HOAc = 1.8×10^{-5}		
	It's just an equilibrium problem. Equilibrium problems have???		
	3 FRIGGING PARTS!!!!!!!!		
Slide 29		1	
5.1.de 25	Old Familiar solution		
	1 st we need a balanced equation:		
Slide 30		1	
0.1.0.0	Old Familiar solution		
	1^{st} we need a balanced equation: HOAc $_{(aq)}$ + H $_2$ O $_{(I)}$ \leftrightarrow H $_3$ O $^+$ $_{(aq)}$ + OAc $^ _{(aq)}$		
	Then we need to construct an ICE chart		

Slide 31

HOAc
$$_{(aq)}$$
 + H₂O $_{(i)} \leftrightarrow$ H₃O⁺ $_{(aq)}$ + OAc $_{(aq)}$

I

???? ??? ??? ???

E

??? ??? ??? ???

What do we know, what do we need to know?

ICE ICE Baby ICE ICE

Slide 33

A peek back at the problem.

What is the pH of a 0.100 M HOAc solution? The $\rm K_a$ of HOAc = 1.8 x $\rm 10^{-5}$

What do we know?

What do we need to know?

•			
•			

A peek back at the problem.

What is the pH of a 0.100 M HOAc solution? The K_a of HOAc = 1.8 x 10^{-5}

What do we know? The INITIAL CONCENTRATION of HOAc

What do we need to know? The EQUILIBRIUM CONCENTRATION of H_3O^+ (Recall, that's what pH is: pH = - log $[H_3O^+]$

Slide 35

ICE ICE Baby ICE ICE

Slide 36

Use the Equilibrium Constant Expression

$$\begin{split} \text{K}_{\text{a}} &= 1.8 \times 10^{-5} = \underbrace{\text{[$H_{\underline{3}}$O^+][A^-]}}_{\text{[HA]}} \\ 1.8 \times 10^{-5} &= \underbrace{\text{[x][x]}}_{\text{[$0.100-x$]}} \end{split}$$

How do we solve this?

2 Possibilities

 $1.8 \times 10^{-5} = \frac{[x][x]}{[0.100-x]}$

- 1. Assume x << 0.100
- Don't assume x<<0.100 and use quadratic formula

Slide 38

The long way

$$1.8 \times 10^{-5} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^2}{(0.1 - x)}$$

 $x^2 = 1.8 \times 10^{-5} (0.1-x) = 1.8 \times 10^{-6} - 1.8 \times 10^{-5} x$ $x^2 + 1.8 \times 10^{-5} x - 1.8 \times 10^{-6} = 0$

Recall the quadratic formula: $x = \frac{-b + /- SQRT(b^2-4ac)}{2a}$

Slide 39

The long way

 $\begin{array}{l} x^2 + 1.8x10^{-5} \ x - 1.8 \ x \ 10^{-6} = 0 \\ x = \frac{-b}{-5} \frac{-b}{-5} \frac{-1.8x10^{-5}}{-24} \\ x = \frac{-1.8x10^{-5}}{-2(1)} \frac{-1.8 \times 10^{-6}}{-2(1)} \\ x = [-1.8x10^{-5} +/- SQRT((1.8x10^{-5})^2 - 4(1)(-1.8 \times 10^{-6}))] \\ x = [-1.8x10^{-5} +/- SQRT(7.200 \times 10^{-6})] \\ x = [-1.8x10^{-5} +/- 2.68 \times 10^{-3}] \end{array}$

•			
•			
•			
•			
•			
•			
•			
•			
-			
-		 	

2 roots - only 1 makes sense

 $x = [-1.8x10^{-5} + /- 2.68 \times 10^{-3}]$

The negative root is clearly non-physical

 $x = 1.33 \times 10^{-3} M$

We can now put this back into the ICE chart

Slide 41

ICE ICE Baby ICE ICE

Slide 42

$pH = -\log [H_3O^+]$

pH = - log [H₃O⁺]= - log (1.33x10⁻³) = 2.88

Was all of that work necessary? Let's look at making the assumption!

Assume x<<0.100

$$\begin{split} &1.8 \times 10^{.5} = \underbrace{|\mathbf{X}|[\mathbf{X}]}_{[0.100 \times \mathbf{X}]} \\ &[0.100 \times \mathbf{X}] \\ &\text{If } \mathbf{x} < < 0.100, \text{ then } 0.100 \cdot \mathbf{x} \approx 0.100 \\ &1.8 \times 10^{.5} = \underbrace{|\mathbf{X}|[\mathbf{X}]}_{[0.100]} \\ &1.8 \times 10^{.6} = \underbrace{|\mathbf{X}|[\mathbf{X}]}_{[\mathbf{X}]} = \mathbf{x}^2 \\ &\mathbf{x} = 1.34 \times 10^{.3} \text{ M} \end{split}$$

Slide 44

Was the assumption good?

We assumed that x<<0.100, is 1.34x10⁻³ M << 0.100?
The 5% rule applies and it is very close, but notice how little difference it makes in the final answer?

And if I calculate the pH = - log (1.34x10 $^{-3}$) pH = 2.87

This compares well with pH = 2.88 calculated the long way. Both are pH = 2.9 to 2 sig figs. And look at all the work we saved!

Slide 45

ALL acid dissociation reactions are the same!

 $\textbf{Acid + water} \leftrightarrow H_3O^{\scriptscriptstyle +} + protonless \ acid$

The ONLY thing that happens in an acid dissociation reaction is that the acid donates its proton to water to make $\rm H_3O^+.$

A single proton hops from the acid to the water.

That's it. ALWAYS.

Anything else, even if there's an acid, is not a $\ensuremath{K_{a}}$ reaction.

lid		

Base Dissociation Reactions

- □ Acids and bases are matched sets.
- $\hfill\Box$ If there is a $K_{a\prime}$ then it only makes sense that there is a K_{b}
- □ The base dissociation reaction is also within the Bronsted-Lowry definition
- Water now serves as the acid rather than the base.

Slide 47

General K_b Reaction

The general form of this reaction for any generic base (B) is:

Slide 48

	-	
-1	`	1

It is, after all, just another ${\rm ``K''}$

$$K_b = \frac{[HB][OH^-]}{[B]}$$

And this gets used just like any other equilibrium constant expression.

Slide 50 It's an equilibrium questionit's got THREE PARTS! Question What is the pH of 0.250 M NH₁? K₀ (NH₃) = 1.79×10⁻³ at 298 K NH₃(eq) + H₂O(q) ← NH₄* (eq) + OH (eq) K₀ = [OH-TINH₄-1] (NH₂)	Slide 49	Question What is the pH of 0.250 M NH ₃ ? $K_b \text{ (NH}_3\text{)} = 1.79 \times 10^{-5} \text{ at } 298 \text{ K}$	
Question What is the pH of 0.250 M NH ₃ ? $K_b (NH_3) = 1.79 \times 10^{-5} \text{ at } 298 \text{ K}$ $NH_{3 (aq)} + H_2O_{(I)} \leftrightarrow NH_4^+_{(aq)} + OH^{(aq)}$ $K_b = [OH-][NH_4+]$	Slide 50		
Question What is the pH of 0.250 M NH ₃ ? $K_b (NH_3) = 1.79 \times 10^{-5} \text{ at } 298 \text{ K}$ $NH_{3 (aq)} + H_2O_{(I)} \leftrightarrow NH_4^+_{(aq)} + OH^{(aq)}$ $K_b = [OH-][NH_4+]$			
	Slide 51	What is the pH of 0.250 M NH ₃ ? $K_b (NH_3) = 1.79 \times 10^{-5} \text{ at } 298 \text{ K}$ $NH_{3 (aq)} + H_2O_{(l)} \leftrightarrow NH_{4^+ (aq)} + OH^{(aq)}$ $K_b = \underline{[OH-][NH_4+]}$	

Question

Slide 53

Question

```
\begin{array}{l} 1.79 \times 10^{-5} = \underbrace{(x)(x)}_{0.250 - x} \\ \text{Assume } x << 0.250 \\ 1.79 \times 10^{-5} = \underbrace{(x)(x)}_{0.250} \\ \text{0.250} \\ \text{x} = 2.11 \times 10^{-3} = [\text{OH-}] \text{ (good assumption pOH = - log (2.11 \times 10^{-3}) = 2.67}_{\text{POH + pH = 14}} \\ \text{14 - pOH = pH} \\ \text{14 - 2.67 = 11.33 = pH} \end{array}
```

Slide 54

Water, water everywhere

Both K_a and K_b reactions are made possible by the role of water.

Water acts as either an acid or a base. Water is **amphiprotic**.

If water is both an acid and a base, why doesn't it react with itself?

•			
•		 	
•			

חוו		

Water does react with itself

Autoionization of water:

$$H_2O_{\;(I)}\,+\,H_2O_{\;(I)} \leftrightarrow H_3O^+_{\;(aq)}\,+\,OH^-_{\;(aq)}$$

Slide 56

Autoionization of water:

$$\text{H}_2\text{O}_{\text{ (I)}} + \text{H}_2\text{O}_{\text{ (I)}} \leftrightarrow \text{H}_3\text{O}^+_{\text{ (aq)}} + \text{OH}^-_{\text{ (aq)}}$$

- □ This is, in fact, the central equilibrium in all acid/base dissociations
- \blacksquare This is also the connection between K_a and K_b reactions.

Slide 57

The Equilibrium Constant Expression K_w

$$H_2O_{(I)} + H_2O_{(I)} \leftrightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$$

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

K IS K IS K - this is just another equilibrium constant.

Let's ICE

Slide 58

Slide 60

$$\begin{split} K_w &= [H_3O^+][OH^-] = 1.0 \times 10^{-14} \\ [x] &[x] = 1.0 \times 10^{-14} \\ x^2 &= 1.0 \times 10^{-14} \\ x &= 1.0 \times 10^{-7} \end{split}$$

Evaluating $K_{\rm w}$

Slide 62

$pH = -\log [H_3O^+]$

 $pH = - log (1.0x10^{-7})$ pH = 7

This is why "7" is considered neutral pH. It is the natural pH of water. Neutral water doesn't have NO acid, it has the EQUILIBRIUM (K_w) amount!!!

Slide 63

$K_{b}\text{, }K_{a}\text{, and }K_{w}$

It is the Kw of water (1.0×10^{-14}) which is responsible for the observation that: pOH + pH = 14 Since we've already established that pure water has 1×10^{-7} M concentrations of both H+ and OH·

In an aqueous solution, this relationship always holds because K_w must be satisfied even if there are other equilibria that also must be satisfied.

Slide 64	$[H_3O^+][OH^-] = 1.0 \times 10^{-14}$ $-log([H_3O^+][OH^-]) = -log(1.0 \times 10^{-14})$ $-log[H_3O^+] + (-log[OH^-]) = 14$ $pH + pOH = 14$	
Slide 65	Clickers!	
Slide 66	K depends onTemperature. So the "neutral pH" of water is only 7 at STANDARD TEMPERATURE AND PRESSURE! If the water is at a different temperature, K _w is NOT 1.0x10 ⁻¹⁴	

Slide	67
-------	----

K_b , K_a , and K_w

The general $\mathbf{K}_{\mathbf{a}}$ reaction involves donating a proton to water.

$$HA + H_2O \leftrightarrow H_3O^+ + A^-$$

where A- is the "conjugate base" to HA, and $\rm H_3O^+$ is the conjugate acid to $\rm H_2O.$

The general Kb reaction involves accepting a proton from water. $A^{\text{-}} + H_2O \leftrightarrow \text{HA} + OH^{\text{-}}$

Slide 68

Writing the K for both reactions

$$HA + H_2O \leftrightarrow H_3O^+ + A^-$$

$$K_a = \underbrace{[H_3O+][A-]}_{[HA]}$$

$$A^{-} + H_2O \leftrightarrow HA + OH^{-}$$

$$K_b = \underline{[HA][OH-]}$$
 $[A-]$

Slide 69

Writing the K for both reactions

If you add these two reactions together

$$HA + H_2O \leftrightarrow H_3O^+ + A^-$$

$$A^- + H_2O \leftrightarrow HA + OH^-$$

$$HA + A^{rr} + H_2O + H_2O \leftrightarrow H_3O^+ + A^r + HA^r + OH^-$$

 $H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$ OMG! IT'S $K_W!!!!$

Slide	70
-------	----

Add 2 reactions, you multiply the Ks

$$\begin{split} &\text{If you multiply } K_a \text{ by } K_b \text{:} \\ &K_a * K_b = \underbrace{[H_2 O +][A -]}_{[HA]} \underbrace{[HA][OH -]}_{[A -]} \\ &= \underbrace{[H_3 O +][OH -]}_{=K_w} \end{split}$$

So, if you know K_b , you know K_a and vice versa because: $K_a {}^*K_b {}^-K_w$

Slide 71

Remember...

 ${\rm K_a}$ and ${\rm K_b}$ refer to specific reactions. I can't just apply them to any old reaction I want.

$$K_w = K_a * K_b$$

BUT this relationship only holds if the $\rm K_a$ and the $\rm K_b$ are related. It is an acid and its CONJUGATE base (or a base and its CONJUGATE acid).

Slide 72

 $K_a(HOAc)*K_b(?) = 1x10^{-14}$

It HAS to be the conjugate base.

The conjugate base is ALWAYS just the acid without the H+ it donated. $\label{eq:conjugate} % \begin{subarray}{ll} \end{subarray} % \begin{subar$

 $HOAc + H_2O \leftrightarrow H_3O^+ + OAc^-$?=OAc^-

•			
•			
•			
•			
•			
•			
•			
•			

	73
lid	

 $K_a(?)*K_b(NH_3) = 1x10^{-14}$

It HAS to be the conjugate base.

The conjugate base is ALWAYS just the acid without the H+ it donated.

$$NH_3 + H_2O \leftrightarrow OH^- + NH_4^+$$

 $?=NH_4^+$

Slide 74

Remember...

HOAc is an acid OAC- is the CONJUGATE base of HOAc

It is this reaction that you are calculating the $\rm K_b$ for if you use the relationship $\rm K_w = \rm K_a{}^*\rm K_b$