Slide 1]
Silde 1		
	MORE ACIDS AND BASES	
G1: 1 2		1
Slide 2	Let's try another little problem:	
	What is the pH of 0.123 M formic acid $(HCHO_2)$?	
	$K_a(HCHO_2) = 1.8 \times 10^{-4}$	
a		1
Slide 3		
	Why don't I write it as CH ₂ O ₂ ?	
	I could, same molecule, but by writing it HCHO ₂ I'm doing two things:	
	I'm emphasizing it's an acid by putting the "H" out front. I'm indicating that only ONE "H" can come off the molecule.	
	come on the molecule.	

Siiae 4		
	Not all H's are "acidic"	
	CH ₄ – methane	
	It's got 4 hydrogensnone of them are	
	It's got 4 hydrogensnone of them are considered to be "acidic" because they don't	
	easily come off.	
	Conceptly, acids have the "H" bended to	
	Generally, acids have the "H" bonded to something more electronegative like "O" or	
	a halogen.	
l		
01:4- 5		1
Slide 5		
	H-O-H (acidic – H bonded to O)	
	H-Cl (acidic – H bonded to halogen)	
	H-S-H (acidic – H bonded to S)	
	H-C (not acidic – H bonded to C)	
Į		
01:1 6		1
Slide 6		
	Let's try another little problem:	
	What is the pH of 0.123 M formic acid	
	(HCHO ₂)?	
	$K_a(HCHO_2) = 1.8 \times 10^{-4}$	
Į		

01. 1

Slide	7

The 1st thing we need is...

A BALANCED EQUATION!

Slide 8

HCHO₂

What does the formic acid react with?

 H_2O

How do you even know there's water? It's a solution! (M)

What happens in the reaction?

A proton moves from the acid (HCHO $_{\rm 2}$) to the base (H $_{\rm 2}$ O):

 $HCHO_2$ (aq) + H_2O (I) \rightleftharpoons CHO_2^- (aq) + H_3O^+ (aq)

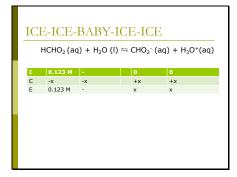
Slide 9

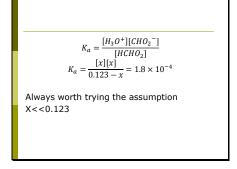
Once I have a balanced equation:

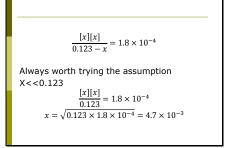
 $HCHO_2$ (aq) + H_2O (I) \rightleftharpoons CHO_2^- (aq) + H_3O^+ (aq)

- 2 more parts:
- 2. K equation
- 3. Ice chart!

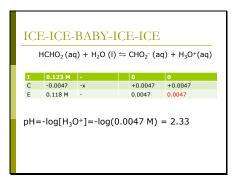
		-




$$\begin{split} \text{HCHO}_2\,(\text{aq}) + \text{H}_2\text{O}\,\,(\text{I}) &= \text{CHO}_2^-\,(\text{aq}) + \text{H}_3\text{O}^+(\text{aq}) \\ K_\alpha &= \frac{[H_3O^+][CHO_2^-]}{[HCHO_2]} \end{split}$$


ICE-ICE-BABY-ICE-ICE

ICE-ICE-BABY-ICE-ICE	
$HCHO_2(aq) + H_2O(I) = CHO_2^-(aq) + H_3O^+(aq)$	
1	
C E	
What do I know?	
$^{\text{\tiny NI}''}$ of HCHO $_2$ is 0.123 M	
I always know the "C" line!	
T = P = 4 = = = = = = = = = = = = = = = =	
Let's try another little problem:	
What is the pH of 0.123 M formic acid (HCHO ₂)?	
$K_a(HCHO_2) = 1.8 \times 10^{-4}$	


Slide 14

$$x = \sqrt{0.123 \times 1.8 \times 10^{-4}} = 4.7 \times 10^{-3}$$
 Good assumption?
$$\frac{0.123}{20} = 6.15 \times 10^{-3}$$
 4.7×10⁻³<6.15×10⁻³ so it's a good assumption! (although it's close)

Sample Problem	
Calculate the pH of a 1x10 ⁻³ M solution o oxalic acid.	f

Solution

As always, we 1st need a balanced equation. Or, in this case, 2 balanced equations! $\text{H}_2\text{C}_2\text{O}_4 \text{ (aq)} + \text{H}_2\text{O}_{(j)} \leftrightarrow \text{HC}_2\text{O}_4^+ \text{ (aq)} + \text{H}_3\text{O}^+ \text{ (aq)} \\ \text{K}_{a1} = 6.5\text{x}10^{-2} \\ \text{HC}_2\text{O}_4^- \text{ (aq)} + \text{H}_2\text{O}_{(j)} \leftrightarrow \text{C}_2\text{O}_4^{-2} \text{ (aq)} + \text{H}_3\text{O}^+ \text{ (aq)} \\ \text{K}_{a2} = 6.1\text{x}10^{-5}$ 2 Equilbria = 2 ICE charts!

Slide 20

Just take them 1 at a time...

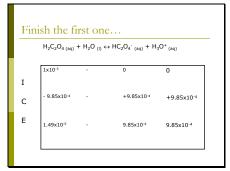
```
{\rm H_{2}C_{2}O_{4}}_{(aq)} + {\rm H_{2}O}_{(I)} \leftrightarrow {\rm HC_{2}O_{4}}^{-}_{(aq)} + {\rm H_{3}O^{+}}_{(aq)}
Ι
С
Е
                  1x10<sup>-3</sup>
```

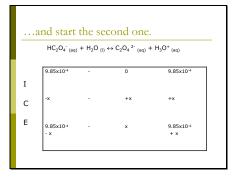
Slide 21

$$K_{a1} = 6.5 \times 10^{-2} = \frac{[H_1O + [HC_1O_1]]}{[H_2 \cup O_1]} = \frac{(x)(x)}{1 \times 10^{-3} - x}$$

Try x<<1x10⁻³

$$6.5x10 - 2 = \frac{(x)(x)}{1x10 - 3 - x} \approx \frac{x^2}{1 \times 10^{-3}}$$


 $6.5 \times 10^{-5} = x^2$


 $x = 8.06 \times 10^{-3}$ which is NOT much less than 1×10^{-3}

We have to do it the Quadratic Way!

```
K_{a1} = 65 \times 10^{-2} = \frac{(x)(x)}{1 \times 10^{-3} - x}
6.5x10^{-5} - 6.5x10^{-2} x = x^{2}
0 = x^{2} + 6.5x10^{-2} x - 6.5x10^{-5}
x = \frac{-b + /- SQRT(b^{2} - 4ac)}{2a}
x = \frac{-6.5x10^{-2} + /- SQRT((6.5x10^{-2})^{2} - 4(1)(-6.5x10^{-5}))}{2(1)}
x = \frac{-6.5x10^{-2} + /- SQRT(4.485x10^{-3})}{2}
x = \frac{-6.5x10^{-2} + /- 6.697x10^{-2}}{2}
x = 9.85x10^{-4} M
```

Slide 23

$$K_{a2} = {}_{61}x10 - 5 = \frac{[H_30^{-1}](C_2Q_4^{-1}]}{[HC_2Q_4^{-1}]}$$

$$= \frac{(x)(9.85 \times 10^{-4} + x)}{9.85 \times 10^{-4} - x}$$
Let's try x<< 9.85 x 10⁻⁴ + x)
$$6.1x10 - 5 = \frac{(x)(9.85 \times 10^{-4} + x)}{9.85 \times 10^{-4} - x}$$

$$\approx \frac{x(9.85 \times 10^{-4})}{9.85 \times 10^{-4}}$$
6.1x10-5 = x
6.1x10-5 = x
6.1x10-5 is NOT much less than 9.85x10-4
Dang it all!

Slide 26

$$K_{s2} = {}_{61}x10 - 5 = \frac{[H_30 +][C_20_4^2]}{[HC_20_4]}$$

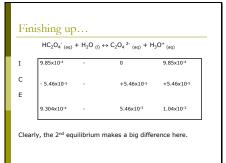
$$= \frac{(x)(9.85x10 - 4 + x)}{9.85x10 - 4 - x}$$

$$6.0085x10^{-8} - 6.1x10^{-5} x = 9.85x10^{-4} x + x^2$$

$$0 = x^2 + 1.046x10^{-3} x - 6.0085x10^{-8}$$

$$x = -b + f - SQRT(b^2 - 4ac)$$

$$2a$$


$$x = -1.046x10^{-1} + SQRT((1.046x10^{-3})^2 - 4(1)(-6.0085x10^{-8}))$$

$$x = -1.046x10^{-3} + f - SQRT(1.334x10^{-6})$$

$$x = -1.046x10^{-3} + f - 1.155x10^{-3}$$

$$x = -1.046x10^{-3} + f - 1.155x10^{-3}$$

$$x = 5.46x10^{-5} M$$

Sl	ide	28
21	ıae	28

Do I need to do this for all acids and bases?

Most, but not all.

There is a distinction between a "strong acid" and a "weak acid". (Or, a "strong base" and a "weak base".

Slide 29

"strong" isn't STRONG, it's "complete"

Would you rather drink a strong acid or a weak acid?

Depends on the concentration.

"strong" = complete dissociation "weak" = partial dissociation

Slide 30

 $HA + H_2O = A^- + H_3O^+$

Strong = "→"

Weak = "≒"

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

Complete dissociation means it all reacts so there is ZERO HA left. In other words, ${\rm K_a}$ is HUGE

Partial dissociation means there is some HA left. In other words, $\mathbf{K}_{\mathbf{a}}$ is a number.

·	
·	

Slide 31	Appendix II (your BEST friend) If you look at the Table of K _a in Appendix II you'll see numbers from 10 ⁻¹ down to 10 ⁻¹³ . All are "weak acids". If you look on page 665, you'll see a short list of "strong acids". These actually have K _a of 10 ⁶ or higher. They are soooo big, they are usually considered infinite.	
Slide 32	Strong Acids H ₂ SO ₄ HNO ₃ HCI HCIO ₄ HBr HI H with a big electronegative group.	

Strong Bases (p. 682)

LiOH NaOH KOH Sr(OH)₂ Ca(OH)₂ Ba(OH)₂

Alkali metals (hey! Where'd the name come from! \circledcirc) with hydroxide ions.

What is the pH of 1x10⁻⁸ M H $_2$ SO $_4$? K_{a1} = infinite K_{a2} = 1.0x10⁻²

Slide 35

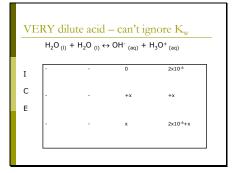
Just take them 1 at a time...

Slide 36

2^{nd} one starts where 1^{st} one ends!

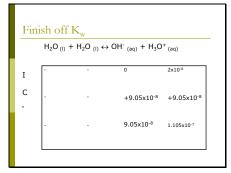
 $\begin{aligned} &\mathsf{K}_{\mathsf{a2}} = 1.0 \times 10^{-2} = \underbrace{[\underline{\mathsf{H}}_2 O^+][SO_4^{2-}]}_{[HSO_4^-]} \\ &= \underbrace{1.0 \times 10^{-2} = \underbrace{(1 \times 10^{-8} + \mathsf{X})(\mathsf{X})}_{(1 \times 10^{-8} - \mathsf{X})}} \end{aligned}$ Can we assume x<<0.100?? Never hurts to try. $1.0 \times 10^{-2} = \underbrace{(1 \times 10^{-8})(\mathsf{X})}_{(1 \times 10^{-8})} \\ &\times = 1.0 \times 10^{-2} \text{ which is NOT much less than } 1 \times 10^{-8} \end{aligned}$ We have to do it the Quadratic Way!

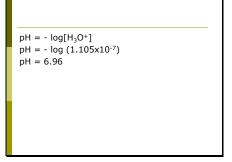
Slide 38


$$\begin{split} &K_{a2} = 1.0x10^{-2} = \underbrace{[H_3O^+][SQ_a^{-2}]}_{[HSO_a^+]} \\ &= \underbrace{1.0x10^{-2} + \underbrace{(1x10^+ + x)(x)}_{[1x10^+ + x)(x)}}_{1.0x10^{-10} - 1.0x10^{-2} \times -1.0x10^{-6} \times + x2} \\ &0 = x^2 + 1.000001x10^2 \times -1.0x10^{-10} \\ &x = \frac{1}{2} + \frac{1$$

Slide 39

Finish off the 2^{nd} one! $HSO_{4^{-}(aq)} + H_{2}O_{(l)} \leftrightarrow SO_{4^{2^{-}}(aq)} + H_{3}O^{+}_{(aq)}$ I $I = 1 \times 10^{-8} - 0 \times 1 \times 10^{-8}$ C E $-1 \times 10^{-8} - +1 \times 10^{-8} + 1 \times 10^{-8}$ $1 \times 10^{-8} - \times 1 \times 10^{-8} \times 2 \times 10^{-8}$


AND START THE 3RD ONE!!!!!!


Slide 41


```
\begin{split} & \mathsf{K}_{\mathsf{w}} = 1.0 \times 10^{-14} = [\mathsf{H}_3 \mathsf{O}^+][\mathsf{OH}^-] \\ & (2.0 \times 10^{-8} + \mathsf{x})(\mathsf{x}) \\ \hline & 1.0 \times 10^{-14} = 2.0 \times 10^{-8} \; \mathsf{x} + \mathsf{x}^2 \\ & 0 = \mathsf{x}^2 + 2.0 \times 10^{-8} \; \mathsf{x} - 1.0 \times 10^{-14} \\ & \mathsf{x} = -\mathsf{b} + / - \mathsf{SQRT}(\mathsf{D}^2 - 4\mathsf{ac}) \\ & \mathsf{z} = \frac{2.0 \times 10^{-8} + / - \mathsf{SQRT}((2.0 \times 10^{-8})^2 - 4(1)(-1.0 \times 10^{-14}))}{2(1)} \\ & \mathsf{x} = -2.0 \times 10^{-8} + / - \mathsf{SQRT}(4.04 \times 10^{-14}) \\ & \mathsf{x} = -2.0 \times 10^{-8} + / - 2.00998 \times 10^{-7} \\ & \mathsf{x} = \frac{2.0 \times 10^{-8} + / - 2.00998 \times 10^{-7}}{2} \\ & \mathsf{x} = 9.04988 \times 10^{-8} = 9.05 \times 10^{-8} \end{split}
```


Slide 45

Suppose you have a really, really dilute acid...say 1x10⁻⁷ MHCl, what's the pH?

S			

What do we know about HCl?

It's a really strong acid!

Suppose I had 0.100 M HCl, what's the pH?

- A. pH = 0.1
- B. pH = 1.0 C. pH = -1.0
- D. pH = 2.3
- E. I'm still thinking about the test...

Slide 47

Strong acids, completely dissociate

So 0.100 M HCl yields 0.100 M $\rm H_{3}O^{+}.$ $pH = -log[H_3O^+] = -log(0.100) = 1.0$

(I don't even need the ICE chart ®)

Slide 48

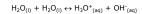
What is the pH of 1x10⁻⁷ M HCl?

HCl is still a strong acid, so it completely dissociates.

 $1x10^{\text{--}7}\,\text{M}$ HCl gives you $1x10^{\text{--}7}\,\text{M}$ H_3O^+ $pH = - log (1x10^{-7}) = 7$

Is that it, are we done? A really dilute acid is neutral. Seems reasonable.

_	 	 			
_	 	 	 	 	-
_	 	 			



There is another equilibrium!

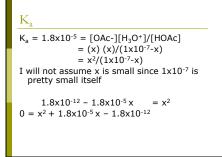
$$\frac{\text{H}_2\text{O}_{(I)} + \text{H}_2\text{O}_{(I)} \leftrightarrow \text{H}_3\text{O}^+_{(aq)} + \text{OH}^-_{(aq)}}{\text{K}_w = 1.0 \text{ x} 10^{-14}}$$

And H₃O⁺ is part of it!

Slide 50

I	-	-	1X10 ⁻⁷	0
С	-X	-X	+X	+X
Е	-	-	1.0x10 ⁻⁷ +x	x

 $K_w = 1.0 \times 10^{-14} = [H_3O+][OH-]$ $1.0 \times 10^{-14} = (1.0 \times 10^{-7} + x)(x)$

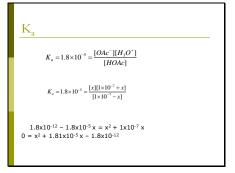

Slide 51

 $H_2O_{(I)}\,+\,H_2O_{(I)} \leftrightarrow H_3O^+_{(aq)}\,+\,OH^-_{(aq)}$

I	=	-	1X10 ⁻⁷	0
С	-X	-X	+6.18x10 ⁻⁸	+6.18x10 ⁻⁸
Е	-	-	1.62x10 ⁻⁷	+6.18×10 ⁻⁸

pH = - log (1.62×10⁻⁷) pH = 6.8 Compared to $1x10^{-7}$ and pH = 7 for the HCl alone

Clida 50		1
Slide 52	When do I need to consider K _w ? 1. The acid is very dilute 2. The acid is very weak (K _a less than 10 ⁻¹²) 3. Both 1 and 2	
Slide 53		
	A very weak acid problem	
	What is the pH of a 1 \times 10 ⁻⁷ M solution of HOAc? $K_{a,HOAc} = 1.8 \times 10^{-5}$	
Slide 54		
	ICE ICE Baby ICE ICE	
	$HOAc_{(aq)} + H_2O_{(1)} = H_3O^+_{(aq)} + OAc_{(aq)}^-$	
	I 1x10-7 - 0 0	
	E 1x10-7-x - x x	
	1x10 ⁻⁷ -x - x x	


Slide 56

Solving for x

```
0 = x^2 + 1.8x10^{-5}x - 1.8x10^{-12}
x = -b + / - SQRT(b^2 - 4ac)
2a
x = -1.8x10^{-5} + / - SQRT((1.8x10^{-5})^2 - 4(1)(-1.8x10^{-12}))
x = -1.8x10^{-5} + / - SQRT(3.24x10^{-10} + 7.2x10^{-12})
x = -1.8x10^{-5} + / - SQRT(3.312x10^{-10})
x = -1.8x10^{-5} + / - 1.8x199x10^{-5}
x = 9.95 \times 10^{-8} M
```

Slide 57

Suppose I already have $1x10^{\text{-}7}\,\mathrm{M}\;[H_3\mathrm{O}^+]$ from the $K_w^{-?}$

Slide 59

Solving for x

 $0 = x^2 + 1.81x10^{-5}x - 1.8x10^{-12}$

- $$\begin{split} x &= -\frac{b + / SQRT(b^2 4ac)}{2a} \\ x &= \frac{-1.81 \times 10^{-5} + f SQRT((1.81 \times 10^{-5})^2 4(1)(-1.8 \times 10^{-12}))}{2(1)} \\ x &= -\frac{1.81 \times 10^{-5} + f SQRT(3.276 \times 10^{-10} + 7.2 \times 10^{-12})}{2} \\ x &= -\frac{1.81 \times 10^{-5} + f SQRT(3.348 \times 10^{-10})}{2} \\ x &= -1.81 \times 10^{-5} + f 1.8298 \times 10^{-5} \\ x &= 9.88 \times 10^{-8} \, \text{M} \end{split}$$

Slide 60

But I already have $1 \times 10^{-7} \, \mathrm{M} \, [\mathrm{H}_3\mathrm{O}^+]$ from the K_w before I even add the HOAc

10 ⁻⁷ M	-	1x10 ⁻⁷ M	0
			o .
9.88 ×10 ⁻⁵ M	-	+9.88 ×10 ⁻⁸ M	+9.88 ×10-8 M
			9.88 ×10-8 M
	9.88 x10 ⁻⁵ M	9.88 x10 ⁻⁵ M -	9.88 x10 °M - +9.88 x10 °M - 1.98x10 °M

S	4	~	\sim	4	

0		. 1		\sim		1
C	omparing	Ħ	he.	2	num	bers

 $\hfill\Box$ Without considering $K_{\rm w},\ I$ calculate from $K_{\rm a}\colon$

 $[H_3O^+] = 9.95 \times 10^{-8} M$

 $\hfill\Box$ Considering K_w and K_a , I calculate:

 $[H_3O^+] = 1.988 \times 10^{-7} M$

A significant difference!!
