Slide 1]
	RedOx Chemistry	
	OK, I balanced the frigging	
	equation, so what?	
ar i o		1
Slide 2	An example of an Electrochemical Reaction	
	Oxidation half-reaction: $Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-}$	
	Reduction half-reaction: $Sn^{4+} + 2 e^{-} \rightarrow Sn^{2+}$	
	Net: 2 Fe ²⁺ + Sn ⁴⁺ \rightarrow 2 Fe ³⁺ + Sn ²⁺	
	So frigging what?	
	Well a couple things:	
Slide 3		1
Shac 3	Looking back at our first example	
	2 Fe ²⁺ + Sn ⁴⁺ → 2 Fe ³⁺ + Sn ²⁺	
	A couple frigging things:	
	1) It is a different set of compounds. If I mix Fe^{2+} and Mn^{5+} and IF the reaction above happens, the stuff in my beaker is	
	different. 2) Electrons movethink lightning and kites.	

C1	i	А	e	1
. 71	ш	(1	е.	4

WTFDYMBI?

What do you mean by "IF"?

$$2 \text{ Fe}^{2+} + \text{Sn}^{4+} \rightarrow 2 \text{ Fe}^{3+} + \text{Sn}^{2+}$$

$$2 \text{ Fe}^{3+} + \text{Sn}^{2+} \rightarrow 2 \text{ Fe}^{2+} + \text{Sn}^{4+}$$

2 Fe
$$^{2+}$$
 + Sn $^{4+}$ \leftrightarrow 2 Fe $^{3+}$ + Sn $^{2+}$

Is this just another case of equilibrium...?

Slide 5

Not Usually

Only one of the reactions will happen. That's why your rusty car never de-rusts!

Why is that? Well, I thought you'd never ask?

Slide 6

Typical Reaction Energy Diagram

So what?

We've seen the reaction diagrams before, what does it mean?

Reactions can only do 4 things:

1) Not happen at all – boring!

2) Proceed as written

3) Proceed in reverse

4) Sit at equilibrium

How do you decide what they do? Yes, that's right, $\Delta G!$

Slide 9

WTFIDG?

Well, we don't know what ΔG is yet, but I'll tell you this: it is related to the second frigging thing – electrons are moving around.

Slide 10		
Silde 10	If electrons are going to move	,
	somebody needs to give them a push!	
	Once they've been pushed, they just fall down the hill!	
	ElectroMotiveForce (emf) is the push.	
	You know it more by the name of its unit: volts!	
Slide 11		
	EME is well the guel	
	EMF is really the push behind the electrons. The	
	voltage is the Reactants potential difference between reactants	
	and products (like voltage altitude).	
	You can't fall uphill! Products	
ļ		
Slide 12	TI CUD (CI	
	The Cell Potential	
	The voltage difference is called the "cell potential" and it depends on a number of factors (the usual suspects: temperature, concentration, pressure etc.).	
	The starting point is STANDARD cell	
	potentials (E ⁰) – which can be found in the Table in Appendix II	
		i e e e e e e e e e e e e e e e e e e e

α	•	1	- 1	
€.	1	~ 1	e 1	- 4
. 7			- 1	- 1

Ox: $Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-} E^{0}_{red} = 0.77 V$

Red : $Sn^{4+} + 2 e^{-} \rightarrow Sn^{2+} E^{0}_{red} = 0.15 V$

Net: 2 Fe²⁺ + Sn⁴⁺ \rightarrow 2 Fe³⁺ + Sn²⁺

So, I got the number from the table, what do I do with them?

Slide 14

They aren't all red!

Ox: $Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-} E^{0}_{red} = 0.77 V$

Ox: Fe²⁺ \rightarrow Fe³⁺ + 1 e⁻ E⁰_{ox} = - 0.77 V

Red : $Sn^{4+} + 2 e^{-} \rightarrow Sn^{2+} E^{0}_{red} = 0.15 V$

Net: 2 Fe²⁺ + Sn⁴⁺ \rightarrow 2 Fe³⁺ + Sn²⁺

Slide 15

What about the Stoichimetry?

Ox: $Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-} E^{0}_{red} = 0.77 V$

Ox: $Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-} E^{0}_{ox} = -0.77 V$

Ox: $2(Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-}) E^{0}_{ox} = 2(-0.77 \text{ V})$?

Red : $Sn^{4+} + 2 e^{-} \rightarrow Sn^{2+} E^{0}_{red} = 0.15 V$

Net: 2 Fe²⁺ + Sn⁴⁺ \rightarrow 2 Fe³⁺ + Sn²⁺

Ignore the Stoichiometry (clutch chest and fake heart attack)

Ox:
$$Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-} E^{0}_{red} = 0.77 V$$

Ox:
$$Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-} E^{0}_{ox} = -0.77 V$$

Ox:
$$2(Fe^{2+} \rightarrow Fe^{3+} + 1 \cdot e^{-}) = 2(-0.77 \text{ V})$$
?

Red : $Sn^{4+} + 2 e^{-} \ ^{2} Sn^{2+} E^{0}_{red} = 0.15 \ ^{2} V$

Net: 2 Fe $^{2+}$ + Sn $^{4+}$ \swarrow 2 Fe $^{3+}$ + Sn $^{2+}$

Slide 17

Why no stoichiometry?

It's literally like an altitude. Two hills 100 foot tall aren't the same as 1 hill 200 feet tall.

You have more electrons falling down, but they all fall down the same distance.

Reactants

Voltage

Slide 18

So what does it all mean?

Ox: $Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-} E^{0}_{ox} = -0.77 V$

Red : $Sn^{4+} + 2 e^{-} \rightarrow Sn^{2+} E^{0}_{red} = 0.15 V$

Net: 2 Fe²⁺ + Sn⁴⁺ \rightarrow 2 Fe³⁺ + Sn²⁺

 $E^{0}_{cell} = E^{0}_{red} + E^{0}_{ox}$ $E^{0}_{cell} = 0.15 \text{ V} + -0.77 \text{ V} = -0.62 \text{ V}$

The cell potential is negative – that means the reaction is NOT spontaneous.

α 1		4	-
 ✓ 	1/1/	а I	u
7)1	IU	e 1	7

Looking back at our first example..

 $2 \text{ Fe}^{2+} + \text{Sn}^{4+} \rightarrow 2 \text{ Fe}^{3+} + \text{Sn}^{2+}$

$$E_{cell}^0 = -0.62 \text{ V}$$

2 Fe
$$^{3+}$$
 + Sn $^{2+}$ \rightarrow 2 Fe $^{2+}$ + Sn $^{4+}$

 $E_{cell}^0 = +0.62 \text{ V}$

Mixing Fe $^{2+}$ and Sn $^{4+}$ results in nothing happening. Mixing Fe $^{3+}$ and Sn $^{2+}$ results in electrons moving.

Slide 20

Another example:

What is the cell potential of:

$$2I^{-}_{(aq)}+ Br_{2(aq)} \rightarrow I_{2(s)} + 2 Br^{-}_{(aq)}$$

Slide 21

Split into ½ reactions

$$2I_{(aq)} \rightarrow I_{2(s)} + 2 e^{-} E_{ox}^{0} = - E_{red}^{0} = - 0.54 V$$

$$\mathrm{Br_{2\,(aq)}}+$$
 2 e- \Rightarrow 2 Br $_{(aq)}$ $\mathrm{E^0}_{\mathrm{red}}$ = 1.09

$$E_{cell}^0 = 1.09 \text{ V} - 0.54 \text{ V} = +0.55 \text{ V}$$

So this reaction is spontaneous and there is an exchange of electrons that fall off a 0.55 V cliff.

Slide 22		
	What happens after electrons fall	
	they get married and raise quarks!	
	nothing unless you catch them!	
	Think hydroelectric power or just an old mill wheelif you catch the falling water, you can	
	make it turn a wheel to do useful work.	
	Catch the falling electrons and use them to do useful work	
01:4- 02		1
Slide 23	Electrochemical cells	
	You know them as "batteries", although that is only one example.	
		1
Slide 24		
	To make a battery	
	I need to separate the half-cells!	
	Why can't I mix them together?	
	They short-circuit!	
	If I put everything in a single heaker, they	
	If I put everything in a single beaker, they just react and I'm done. I need to	
	separate the reactants from the products so I can "catch" the electrons!	
ļ		1

Why no stoichiometry? If I make the falling electrons pass through my electric device, I can use the energy they release as they fall to do something useful.

Products

Slide 26

Slide 27

Slide 29

Whole bunch of possible reactions

```
Cu<sup>2+</sup> + 2 e<sup>-</sup> = Cu E_{red} = 0.34 V

Fe<sup>2+</sup> + 2 e<sup>-</sup> = Fe E_{red} = -0.45 V

Fe<sup>3+</sup> + 1 e<sup>-</sup> = Fe<sup>2+</sup> E_{red} = 0.77 V

Cu<sup>2+</sup> + 1 e<sup>-</sup> = Cu<sup>+</sup> E_{red} = 0.16 V
```

Slide 30

Whole bunch of possible reactions

Cu²⁺ + 2 e⁻ = Cu E_{red} = 0.34 V (could be either) Fe²⁺ + 2 e⁻ = Fe E_{red} = -0.45 V (could be either) Fe³⁺ + 1 e⁻ = Fe²⁺ E_{red} = 0.77 V (could only do ox) Cu²⁺ + 1 e⁻ = Cu⁺ E_{red} = 0.16 V (could only do red)

E is like delta G is related to "K"...biggest positive voltage wins

 $Cu^{2+} + 2 e^- = Cu \quad E_{red} = 0.34 \text{ V (could be either)}$ $Fe^{2+} + 2 e^- = Fe \quad E_{red} = -0.45 \text{ V (could be either)}$

 $Fe^{2+}=1$ e- + Fe^{2+} $E_{ox}=$ -0.77 V (could only do ox) $Cu^{2+}+1$ e^ = Cu^+ $E_{red}=0.16$ V (could only do red)

Slide 32

E is like delta G is related to "K"...biggest positive voltage wins

 $Cu^{2+} + 2 e^- = Cu \quad E_{red} = 0.34 \text{ V (could be either)}$ $Fe^{2+} + 2 e^- = Fe \quad E_{red} = -0.45 \text{ V (could be either)}$

 Cu^{2+} + 1 e $^{\cdot}$ = Cu^{+} $~E_{red}$ = 0.16 V (smaller than the Cu^{2+} to Cu reaction)

Slide 33

E is like delta G is related to "K"...biggest positive voltage wins

 Cu^{2+} + 2 e^{-} = Cu $\ E_{red}$ = 0.34 V (could be either)

 $Fe^{2+} + 2 e^{-} = Fe E_{red} = -0.45 V$ (could be either)

Iron must be oxidized or the $\rm E_{\rm cell}$ would be negative and non-spontaneous.

Slide 34

Slide 36

Shorthand notation 2I· $_{(aq)}$ + Br $_{2(aq)}$ \rightarrow I $_{2(s)}$ + 2 Br· $_{(aq)}$ 2I· $_{(aq)}$ \rightarrow I $_{2(s)}$ + 2 e· E⁰ $_{ox}$ = -E⁰ $_{red}$ = -0.54 V Br $_{2(aq)}$ + 2 e· \rightarrow 2 Br· $_{(aq)}$ E⁰ $_{red}$ = 1.09 I could write it as a chemical reaction, but an electrochemical cell can also be written in shorthand as: Ox reactantjox product[red reactant|reduction product I·(1 M,aq) |I₂(s)||Br₂(1 M,aq)|Br·(1 M,aq)

Slide 37		
	Caveat	
	$I^{-}(1M,aq) I_{2}(s) Br_{2}(1M,aq) Br^{-}(1M,aq)$	
	Of course the I ⁻ and the Br ⁻ might have a	
	counterion present	
	$KI(1M, aq) \mid I_2(s) \mid Br_2(1M, aq) \mid KBr(1M, aq)$	
Slide 38		
	Energy	
	We normally measure energy in "Joules".	
	Electron energy is sometimes measured in	
	"electron volts" which kind of implies the connection between cell potentials and	
	energy.	
	Cell potential is like a cliff. What has more energy, a 1 pound rock falling off a 50 foot cliff or a 10 pound rock?	
	foot cliff or a 10 pound rock?	
Slide 39		
21100 09	Mass is to cliffs asis to volts.	
	The 10 pound rock has more kinetic energy	
	(mgh becomes ½ mv²)	
	In an electron potential field, the equivalent concept to mass is the charge.	
	concept to mass is the charge.	
	Charge is measured in "Coulomb"s ("C") and each electron has a charge of 1.602x10 ⁻¹⁹	
	C C C Clark Has a charge of 1.002X10	
		<u> </u>

Sl

lide 40]
	A Joule is	
	a "Coulomb Volt".	
	Take the charge (# of electrons x each charge) and multiply it by the voltage.	
	Energy is, therefore, determined by the cell potential AND the number of electrons falling through it.	
	idining cirrodyn ici	