Slide 1 Slide 2 "Normal" titration pH is low Slide 3 pH is getting higher

Slide 4

Slide 5

Slide 6

Slide 7

Slide 8

Slide 9

Slide 10

Slide 11

Slide 12

SI	i	А	ما	1	3
	п	(Ю.	- 1	7

MOLES! MOLES! MOLES!

Like all titrations, the issue is one of molar equivalence.

In a normal titration, you simply add base (OH-) to acid (H+) – or the reverse – and at equivalence:

Moles of base added Ξ Moles of acid added

Slide 14

Moles of base = Moles of base $Moles \ of \ base = Moles \ of \ acid \ \frac{moles \ of \ base}{moles \ of \ acid}$

Sometimes this is written as: $M_1V_1=M_2V_2$ This is really a SPECIAL CASE where the stoichiometry is 1:1 Really it's: $M_1V_1=M_2V_2xstoichiometry$

Slide 15

$$i_1A + i_2B = products$$

The stoichiometry is i_1/i_2 $M_1V_1 = M_2V_2\frac{i_1}{i_2} \label{eq:mass}$

Slide 16	For a book tituation at III all about	
	For a back titration, still all about moles	
	Except in this case we actually have an extra step	
	I start with moles of acid: M _{acid} V _{acid} =moles acid I then added a bunch of base to itmoles of base	
	M _{base} V _{base} =moles of base	
	So, what do I then have in the beaker?	
Slide 17		
	Neutralized acid and leftover base	
	Moles base added – moles acid = moles of extra	
	base.	
	I then titrate the moles of extra base with acid $M_{acid\ titrated}V_{acid\ titrated} = moles of acid\ titrated =$	
	moles of extra base.	
Slide 18		
	Of course in the titration I don't actually know the moles of acid I started with – or why would I titrate it?	
	I do know the moles of base I added. And I	
	know how much acid I had to add to titrate to the endpoint.	

SI	1	A	_	1	O
	п	(1	ϵ	- 1	ч

Sample problem

25.00 mL of 0.500 M NaOH is added to a 25.00 mL sample of unknown acid. It takes 13.45 mL of 0.250 M HCl to reach the endpoint. What is the original concentration of the unknown acid?

0.250 M HCl (13.45 mL) = 3.3625 mmol HCl 0.500 M NaOH(25.00 mL) = 12.5 mmol NaOH

Slide 20

Sample problem

0.250 M HCl (13.45 mL) = 3.3625 mmol HCl 0.500 M NaOH(25.00 mL) = 12.5 mmol NaOH

The 3.3625 mmol of HCl represent the leftover NaOH

3.3625 $mmol\ HCl\frac{1\ mol\ NaOH}{1\ mol\ HCl}=3.3625\ mmol\ NaOH$ 12.5 $mmol\ NaOH$ added $-3.625\ mmol\ NaOH=9.1375\ mmol\ NaOH$ that reacted with acid

Slide 21

So there must have been the equivalent of 9.1375 mmol of the acid.

Stoichiometry is unknown so I ASSUME it is monoprotic.

> $9.1375 \, mmol \, acid = 0.3655 \, M$ $25.00 \, mL$
